cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A301899 Heinz numbers of strict knapsack partitions. Squarefree numbers such that every divisor has a different Heinz weight A056239(d).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2018

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			42 is the Heinz number of (4,2,1) which is strict and knapsack, so is in the sequence. 45 is the Heinz number of (3,2,2) which is knapsack but not strict, so is not in the sequence. 30 is the Heinz number of (3,2,1) which is strict but not knapsack, so is not in the sequence.
Sequence of strict knapsack partitions begins: (), (1), (2), (3), (21), (4), (31), (5), (6), (41), (32), (7), (8), (42), (51), (9), (61).
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=If[n===1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@wt/@Divisors[#]&]

Formula

Intersection of A299702 and A005117.

A301830 Number of factorizations of n into factors (greater than 1) of two kinds.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 10, 5, 6, 2, 16, 2, 6, 6, 20, 2, 16, 2, 16, 6, 6, 2, 36, 5, 6, 10, 16, 2, 22, 2, 36, 6, 6, 6, 46, 2, 6, 6, 36, 2, 22, 2, 16, 16, 6, 2, 76, 5, 16, 6, 16, 2, 36, 6, 36, 6, 6, 2, 64, 2, 6, 16, 65, 6, 22, 2, 16, 6, 22, 2, 108, 2, 6, 16, 16, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(6) = 6 factorizations: (2*3)*(), (3)*(2), (2)*(3), ()*(2*3), (6)*(), ()*(6).
The a(12) = 16 factorizations:
  ()*(2*2*3), (2)*(2*3), (3)*(2*2), (2*2)*(3), (2*3)*(2), (2*2*3)*(),
  ()*(2*6), (2)*(6), (6)*(2), (2*6)*(), ()*(3*4), (3)*(4), (4)*(3), (3*4)*(),
  ()*(12), (12)*().
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[facs[d]]*Length[facs[n/d]],{d,Divisors[n]}],{n,100}]
  • PARI
    MultEulerT(u)={my(v=vector(#u)); v[1]=1; for(k=2, #u, forstep(j=#v\k*k, k, -k, my(i=j, e=0); while(i%k==0, i/=k; e++; v[j]+=binomial(e+u[k]-1, e)*v[i]))); v}
    seq(n)={MultEulerT(vector(n, i, 2))} \\ Andrew Howroyd, Nov 18 2018

Formula

Dirichlet g.f.: Product_{n > 1} 1/(1 - n^(-s))^2. [corrected by Ilya Gutkovskiy, Dec 14 2020]
a(p^n) = A000712(n) for prime p. - Andrew Howroyd, Nov 18 2018

A301854 Number of positive special sums of integer partitions of n.

Original entry on oeis.org

1, 3, 7, 13, 25, 40, 67, 100, 158, 220, 336, 452, 649, 862, 1228, 1553, 2155, 2738, 3674, 4612, 6124, 7497, 9857, 12118, 15524, 18821, 24152, 28863, 36549, 44002, 54576, 65125, 80943, 95470, 117991, 139382, 169389, 199144, 242925, 283353, 342139, 400701, 479001
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

A positive special sum of an integer partition y is a number n > 0 such that exactly one submultiset of y sums to n.

Examples

			The a(4) = 13 special positive subset-sums:
1<=(1111), 2<=(1111), 3<=(1111), 4<=(1111),
1<=(211),  3<=(211),  4<=(211),
1<=(31),   3<=(31),   4<=(31),
2<=(22),   4<=(22),
4<=(4).
		

Crossrefs

Programs

  • Mathematica
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Rest[Subsets[y]]],Total],Length[#]===1&];
    Table[Total[Length/@uqsubs/@IntegerPartitions[n]],{n,25}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_combinations
    def A301854(n): return sum(sum(1 for r in Counter(sum(q) for l in range(1,len(p)+1) for q in multiset_combinations(p,l)).values() if r==1) for p in (tuple(Counter(x).elements()) for x in partitions(n))) # Chai Wah Wu, Sep 26 2023

Extensions

a(21)-a(35) from Alois P. Heinz, Apr 08 2018
a(36)-a(43) from Chai Wah Wu, Sep 26 2023

A301900 Heinz numbers of strict non-knapsack partitions. Squarefree numbers such that more than one divisor has the same Heinz weight A056239(d).

Original entry on oeis.org

30, 70, 154, 165, 210, 273, 286, 330, 390, 442, 462, 510, 546, 561, 570, 595, 646, 690, 714, 741, 770, 858, 870, 874, 910, 930, 1045, 1110, 1122, 1155, 1173, 1190, 1230, 1254, 1290, 1326, 1330, 1334, 1365, 1410, 1430, 1482, 1495, 1590, 1610, 1653, 1770
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2018

Keywords

Comments

An integer partition is knapsack if every distinct submultiset has a different sum. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of strict non-knapsack partitions begins: (321), (431), (541), (532), (4321), (642), (651), (5321), (6321), (761), (5421), (7321), (6421), (752), (8321), (743), (871), (9321), (7421), (862), (5431), (6521).
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=If[n===1,0,Total[Cases[FactorInteger[n],{p_,k_}:>k*PrimePi[p]]]];
    Select[Range[1000],SquareFreeQ[#]&&!UnsameQ@@wt/@Divisors[#]&]

Formula

Complement of A005117 in A299702.

A301856 Number of subset-products (greater than 1) of factorizations of n into factors greater than 1.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 3, 4, 1, 12, 1, 4, 4, 14, 1, 12, 1, 12, 4, 4, 1, 29, 3, 4, 7, 12, 1, 17, 1, 27, 4, 4, 4, 36, 1, 4, 4, 29, 1, 17, 1, 12, 12, 4, 1, 62, 3, 12, 4, 12, 1, 29, 4, 29, 4, 4, 1, 53, 1, 4, 12, 47, 4, 17, 1, 12, 4, 17, 1, 90, 1, 4, 12, 12, 4, 17
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2018

Keywords

Comments

For a finite multiset p of positive integers greater than 1 with product n, a pair (t > 1, p) is defined to be a subset-product if there exists a nonempty submultiset of p with product t.

Examples

			The a(12) = 12 subset-products:
12<=(2*2*3), 6<=(2*2*3), 4<=(2*2*3), 3<=(2*2*3), 2<=(2*2*3),
12<=(2*6),   6<=(2*6),   4<=(3*4),   3<=(3*4),   2<=(2*6),
12<=(3*4),
12<=(12).
The a(16) = 14 subset-products:
16<=(16),
16<=(4*4),
16<=(2*8),     8<=(2*8),     4<=(4*4),     2<=(2*8),
16<=(2*2*4),   8<=(2*2*4),   4<=(2*2*4),   2<=(2*2*4),
16<=(2*2*2*2), 8<=(2*2*2*2), 4<=(2*2*2*2), 2<=(2*2*2*2).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Union[Times@@@Rest[Subsets[f]]]],{f,facs[n]}],{n,100}]

A304796 Number of special sums of integer partitions of n.

Original entry on oeis.org

1, 2, 5, 10, 18, 32, 51, 82, 122, 188, 262, 392, 529, 750, 997, 1404, 1784, 2452, 3123, 4164, 5239, 6916, 8499, 11112, 13693, 17482, 21257, 27162, 32581, 41114, 49606, 61418, 73474, 91086, 107780, 132874, 157359, 191026, 225159, 274110, 320691, 386722, 453875
Offset: 0

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

A special sum of an integer partition y is a number n >= 0 such that exactly one submultiset of y sums to n.

Examples

			The a(4) = 18 special positive subset-sums:
0<=(4), 4<=(4),
0<=(22), 2<=(22), 4<=(22),
0<=(31), 1<=(31), 3<=(31), 4<=(31),
0<=(211), 1<=(211), 3<=(211), 4<=(211),
0<=(1111), 1<=(1111), 2<=(1111), 3<=(1111), 4<=(1111).
		

Crossrefs

Programs

  • Mathematica
    uqsubs[y_]:=Join@@Select[GatherBy[Union[Subsets[y]],Total],Length[#]===1&];
    Table[Total[Length/@uqsubs/@IntegerPartitions[n]],{n,25}]

Formula

a(n) = A301854(n) + A000041(n).

Extensions

More terms from Alois P. Heinz, May 18 2018
a(36)-a(42) from Chai Wah Wu, Sep 26 2023

A299764 Number of special products of factorizations of n into factors > 1.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 10, 5, 6, 2, 16, 2, 6, 6, 18, 2, 16, 2, 16, 6, 6, 2, 36, 5, 6, 10, 16, 2, 22, 2, 32, 6, 6, 6, 44, 2, 6, 6, 36, 2, 22, 2, 16, 16, 6, 2, 72, 5, 16, 6, 16, 2, 36, 6, 36, 6, 6, 2, 64, 2, 6, 16, 51, 6, 22, 2, 16, 6, 22, 2, 104, 2, 6, 16, 16, 6
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2018

Keywords

Comments

A special product of a factorization f is a number n > 0 such that exactly one submultiset of f has product n.

Examples

			The a(12) = 16 special subset-products:
1<=(12), 12<=(12),
1<=(2*6), 2<=(2*6), 6<=(2*6), 12<=(2*6),
1<=(3*4), 3<=(3*4), 4<=(3*4), 12<=(3*4),
1<=(2*2*3), 2<=(2*2*3), 3<=(2*2*3), 4<=(2*2*3), 6<=(2*2*3), 12<=(2*2*3).
The a(16) = 18 special subset-products:
1<=(16), 16<=(16),
1<=(4*4), 4<=(4*4), 16<=(4*4),
1<=(2*8), 2<=(2*8), 8<=(2*8), 16<=(2*8),
1<=(2*2*4), 2<=(2*2*4), 8<=(2*2*4), 16<=(2*2*4),
1<=(2*2*2*2), 2<=(2*2*2*2), 4<=(2*2*2*2), 8<=(2*2*2*2), 16<=(2*2*2*2).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sppr[y_]:=Join@@Select[GatherBy[Union[Subsets[y]],Times@@#&],Length[#]===1&];
    Table[Length[Join@@sppr/@facs[n]],{n,30}]
Showing 1-7 of 7 results.