cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 70 results. Next

A300360 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that x or y is a power of 2 (including 1) and x + 63*y = 2^(2k+1) for some k = 0,1,2,....

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 3, 4, 2, 2, 4, 1, 2, 1, 1, 2, 4, 3, 1, 1, 2, 1, 6, 2, 2, 2, 5, 1, 4, 1, 2, 6, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 2, 1, 7, 3, 1, 4, 1, 2, 8, 1, 3, 7, 3, 4, 6, 3, 4, 4, 6, 4, 3, 2, 4, 3, 1, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 03 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 5, 13, 25, 29, 59, 61, 79, 91, 95, 101, 103, 1315, 2^k (k = 1,2,3,...), 2^(2k+1)*m (k = 0,1,2,... and m = 3, 5, 7, 11, 15, 19, 23).
Note the difference between the current sequence and A300356.
In the comments of A300219, the author conjectured that a positive square n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and x + 3*y are powers of 4 unless n has the form 4^k*81503 with k a nonnegative integer. Since 81503^2 = 208^2 + 16^2 + 51167^2 + 63440^2 with 16 = 4^2 and 208 + 3*16 = 4^4, this implies that any positive square can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or y is a power of 4 and x + 3y is also a power of 4. We also conjecture that for any positive integer n not of the form 4^k*m (k =0,1,... and m = 2, 7) we can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or y is a power of 4 and x + 2*y is also a power of 4.

Examples

			a(38) = 1 since 38^2 = 2^2 + 0^2 + 12^2 + 36^2 with 2 = 2^1 and 2 + 63*0 = 2^1.
a(86) = 2 since 86 = 65^2 + 1^2 + 19^2 + 53^2 = 65^2 + 1^2 + 31^2 + 47^2 with 1 = 2^0 and 65 + 63*1 = 2^7.
a(535) = 3 since 535^2 = 2^2 + 130^2 + 64^2 + 515^2 = 2^2 + 130^2 + 139^2 + 500^2 = 8^2 + 520^2 + 40^2 + 119^2 with 2 = 2^1, 8 = 2^3, 2 + 63*130 = 2^13 and 8 + 63*520 = 2^15.
a(1315) = 1 since 1315^2 = 512^2 + 512^2 + 61^2 + 1096^2 with 512 = 2^9 and 512 + 63*512 = 2^15.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[a_,n_]:=Pow[a,n]=IntegerQ[Log[a,n]];
    tab={};Do[r=0;Do[If[SQ[n^2-x^2-y^2-z^2]&&(Pow[2,x]||Pow[2,y])&&Pow[4,(x+63y)/2],r=r+1],{x,0,n},{y,0,Sqrt[n^2-x^2]},{z,0,Sqrt[(n^2-x^2-y^2)/2]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A300844 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or 2*y or z is a square and (12*x)^2 + (21*y)^2 + (28*z)^2 is also a square.

Original entry on oeis.org

1, 4, 4, 2, 5, 6, 2, 2, 4, 5, 7, 1, 3, 7, 2, 3, 5, 7, 7, 2, 6, 1, 2, 2, 2, 11, 7, 3, 3, 8, 5, 1, 4, 5, 9, 4, 6, 8, 6, 4, 7, 9, 3, 3, 2, 9, 2, 1, 3, 6, 16, 5, 9, 7, 6, 5, 1, 5, 9, 4, 4, 7, 5, 5, 5, 17, 6, 4, 7, 3, 6, 3, 6, 11, 11, 4, 3, 1, 8, 2, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 13 2018

Keywords

Comments

Conjecture 1: a(n) > 0 for all n = 0,1,2,....
Conjecture 2: Any positive integer can be written as x^2 + y^2 + z^2 + w^2 with w a positive integer and x,y,z nonnegative integers such that x or y or z is a square and 144*x^2 + 505*y^2 + 720*z^2 is also a square.
By the author's 2017 JNT paper, each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that x (or 2*x) is a square.
In 2016, the author conjectured in A271510 that each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y >= z such that (3*x)^2 + (4*y)^2 + (12*z)^2 is a square.
See also A300791 and A300792 for similar conjectures.

Examples

			a(11) = 1 since 11 = 0^2 + 1^2 + 1^2 + 3^2 with 0 = 0^2 and (12*0)^2 + (21*1)^2 + (28*1)^2 = 35^2.
a(56) = 1 since 56 = 4^2 + 6^2 + 2^2 + 0^2 with 4 = 2^2 and (12*4)^2 + (21*6)^2 + (28*2)^2 = 146^2.
a(77) = 1 since 77 = 4^2 + 0^2 + 5^2 + 6^2 with 4 = 2^2 and (12*4)^2 + (21*0)^2 + (28*5)^2 = 148^2.
a(184) = 1 since 184 = 12^2 + 2^2 + 0^2 + 6^2 with 0 = 0^2 and (12*12)^2 + (21*2)^2 + (28*0)^2 = 150^2.
a(599) = 1 since 599 = 21^2 + 11^2 + 1^2 + 6^2 with 1 = 1^2 and (12*21)^2 + (21*11)^2 + (28*1)^2 = 343^2.
a(7836) = 1 since 7836 = 38^2 + 18^2 + 68^2 + 38^2 with 2*18 = 6^2 and (12*38)^2 + (21*18)^2 + (28*68)^2 = 1994^2.
a(15096) = 1 since 15096 = 16^2 + 6^2 + 52^2 + 110^2 with 16 = 4^2 and (12*16)^2 + (21*6)^2 + (28*52)^2 = 1474^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[(SQ[x]||SQ[2y]||SQ[z])&&SQ[(12x)^2+(21y)^2+(28z)^2]&&SQ[n-x^2-y^2-z^2],r=r+1],{x,0,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];tab=Append[tab,r],{n,0,80}]

A282542 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 3*y + 5*z and (at least) one of y,z,w are squares.

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 2, 1, 2, 4, 2, 2, 4, 5, 3, 2, 2, 2, 2, 1, 5, 5, 2, 1, 5, 8, 1, 2, 3, 3, 3, 2, 3, 5, 5, 2, 8, 5, 1, 1, 6, 6, 1, 2, 5, 9, 5, 4, 2, 5, 5, 2, 5, 4, 5, 2, 1, 5, 3, 2, 7, 9, 5, 2, 3, 6, 2, 2, 8, 9, 5, 3, 5, 9, 2, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 17 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,....
This is stronger than the 1-3-5 conjecture (cf. A271518).
By the linked JNT paper, any nonnegative integer can be expressed as the sum of a fourth power and three squares.

Examples

			a(12) = 1 since 12 = 1^2 + 1^2 + 1^2 + 3^2 with 1 + 3*1 + 5*1 = 3^2 and 1 = 1^2.
a(28) = 1 since 28 = 1^2 + 1^2 + 1^2 + 5^2 with 1 + 3*1 + 5*1 = 3^2 and 1 = 1^2.
a(47) = 1 since 47 = 3^2 + 1^2 + 6^2 + 1^2 with 3 + 3*1 + 5*6 = 6^2 and 1 = 1^2.
a(92) = 1 since 92 = 1^2 + 1^2 + 9^2 + 3^2 with 1 + 3*1 + 5*1 = 3^2 and 9 = 3^2.
a(188) = 1 since 188 = 7^2 + 9^2 + 3^2 + 7^2 with 7 + 3*9 + 5*3 = 7^2 and 9 = 3^2.
a(248) = 1 since 248 = 10^2 + 2^2 + 0^2 + 12^2 with 10 + 3*2 + 5*0 = 4^2 and 0 = 0^2.
a(388) = 1 since 388 = 13^2 + 1^2 + 13^2 + 7^2 with 13 + 3*1 + 5*13 = 9^2 and 1 = 1^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&(SQ[y]||SQ[z]||SQ[Sqrt[n-x^2-y^2-z^2]])&&SQ[x+3y+5z],r=r+1],{x,0,n^(1/2)},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]}];Print[n," ",r];Continue,{n,0,80}]

A300908 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with (3*x)^2 + (4*y)^2 + (12*z)^2 a square , where w is a positive integer and x,y,z are nonnegative integers such that z or 2*z or 3*z is a square.

Original entry on oeis.org

1, 3, 1, 2, 6, 1, 2, 3, 2, 7, 2, 2, 7, 1, 5, 2, 7, 9, 3, 6, 2, 3, 4, 1, 9, 7, 3, 4, 5, 7, 2, 3, 5, 6, 3, 4, 7, 3, 8, 6, 7, 6, 4, 3, 7, 3, 2, 2, 4, 13, 5, 8, 6, 5, 3, 1, 8, 8, 3, 6, 5, 1, 11, 2, 16, 5, 4, 8, 1, 8, 2, 7, 11, 7, 5, 4, 2, 13, 2, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 15 2018

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 0. Moreover, any positive integer can be written as x^2 + y^2 + z^2 + w^2 with (3*x)^2 + (4*y)^2 + (12*z)^2 a square, where w is a positive integer and x,y,z are nonnegative integers for which one of z, z/2, z/3 is a square and z/2 (or z/3) is a power of 4 (including 1).
Conjecture 2: Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with (3*x)^2 + (4*y)^2 + (12*z)^2 a square, where x,y,z,w are nonnegative integers for which x or z is a square or y = 2^k for some k = 0,1,2,....
Conjecture 3. Let a,b,c be positive integers with a <= b <= c and gcd(a,b,c) = 1. If each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w integers such that (a*x)^2 + (b*y)^2 + (c*z)^2 is a square, then (a,b,c) must be among the three triples (3,4,12), (12,15,20) and (12,21,28).
We have verified Conjectures 1 and 2 for n up to 5*10^5 and 10^6 respectively.
See also A300791 and A300844 for similar conjectures.

Examples

			a(6) = 1 since 6 = 1^2 + 1^2 + 0^2 + 2^2 with 0 = 0^2 and (3*1)^2 + (4*1)^2 + (12*0)^2 = 5^2.
a(14) = 1 since 14 = 3^2 + 0^2 + 1^2 + 2^2 with 1 = 1^2 and (3*3)^2 + (4*0)^2 + (12*1)^2 = 15^2.
a(69) = 1 since 69 = 0^2 + 8^2 + 2^2 + 1^2 with 2*2 = 2^2 and (3*0)^2 + (4*8)^2 + (12*2)^2 = 40^2.
a(671) = 1 since 671 = 18^2 + 17^2 + 3^2 + 7^2 with 3*3 = 3^2 and (3*18)^2 + (4*17)^2 + (12*3)^2 = 94^2.
a(1175) = 1 since 1175 = 30^2 + 5^2 + 9^2 + 13^2 with 9 = 3^2 and (3*30)^2 + (4*5)^2 + (12*9)^2 = 142^2.
a(12151) = 1 since 12151 = 50^2 + 71^2 + 49^2 + 47^2 with 49 = 7^2 and (3*50)^2 + (4*71)^2 + (12*49)^2 = 670^2.
a(16204) = 1 since 16204 = 90^2 + 90^2 + 0^2 + 2^2 with 0 = 0^2 and (3*90)^2 + (4*90)^2 + (12*0)^2 = 450^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[z]||SQ[2z]||SQ[3z], Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(3x)^2+(4y)^2+(12z)^2],r=r+1],{x,0,Sqrt[n-1-z^2]},{y,0,Sqrt[n-1-x^2-z^2]}]],{z,0,Sqrt[n-1]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A303235 Number of ordered pairs (x, y) with 0 <= x <= y such that n - 2^x - 2^y can be written as the sum of two triangular numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 4, 5, 6, 6, 6, 8, 7, 7, 8, 8, 8, 10, 10, 10, 10, 9, 9, 11, 9, 10, 11, 10, 9, 12, 10, 11, 14, 13, 11, 14, 12, 12, 13, 15, 12, 14, 12, 13, 14, 14, 14, 15, 13, 11, 14, 13, 11, 16, 13, 10, 11, 13, 11, 14
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 20 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
Note that a nonnegative integer m is the sum of two triangular numbers if and only if 4*m+1 (or 8*m+2) can be written as the sum of two squares.
We have verified a(n) > 0 for all n = 2..4*10^8. See also the related sequences A303233 and A303234.

Examples

			a(2) = 1 with 2 - 2^0 - 2^0 = 0*(0+1)/2 + 0*(0+1)/2.
a(3) = 2 with 3 - 2^0 - 2^0 = 0*(0+1)/2 + 1*(1+1)/2 and 3 - 2^0 - 2^1 = 0*(0+1)/2 + 0*(0+1)/2.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n];
    g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
    QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
    tab={};Do[r=0;Do[If[QQ[4(n-2^k-2^j)+1],r=r+1],{k,0,Log[2,n]-1},{j,k,Log[2,n-2^k]}];tab=Append[tab,r],{n,1,60}];Print[tab]

A282561 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both 2*x - y and 4*z^2 + 724*z*w + w^2 are squares.

Original entry on oeis.org

1, 2, 2, 2, 4, 3, 5, 1, 3, 4, 2, 2, 2, 5, 7, 3, 2, 5, 3, 1, 4, 7, 7, 3, 2, 2, 2, 4, 3, 8, 8, 3, 2, 2, 4, 4, 9, 3, 9, 3, 4, 5, 6, 3, 3, 7, 5, 2, 2, 11, 6, 5, 4, 7, 7, 4, 2, 4, 3, 2, 2, 5, 10, 6, 4, 5, 9, 1, 7, 8, 10, 4, 4, 5, 6, 5, 3, 9, 3, 2, 3
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 18 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 7, 19, 67, 191, 235, 265, 347, 888, 2559).
By the linked JNT paper, any nonnegative integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(z-w) = 0. Whether z = 0 or z = w, the number 4*z^2 + 724*z*w + w^2 is definitely a square.
See also A282562 for a similar conjecture.

Examples

			 a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with 2*1 - 2 = 0^2 and 4*1^2 + 724*1*1 + 1^2 = 27^2.
a(19) = 1 since 19 = 1^2 + 1^2 + 1^2 + 4^2 with 2*1 - 1 = 1^2 and 4*1^2 + 724*1*4 + 4^2 = 54^2.
a(67) = 1 since 67 = 4^2 + 7^2 + 1^2 + 1^2 with 2*4 - 7 = 1^2 and 4*1^2 + 724*1*1 + 1^2 = 27^2.
a(191) = 1 since 191 = 9^2 + 2^2 + 5^2 + 9^2 with 2*9 - 2 = 4^2 and 4*5^2 + 724*5*9 + 9^2 = 181^2.
a(235) = 1 since 235 = 7^2 + 13^2 + 1^2 + 4^2 with 2*7 - 13 = 1^2 and 4*1^2 + 724*1*4 + 4^2 = 54^2.
a(265) = 1 since 265 = 4^2 + 7^2 + 10^2 + 10^2 with 2*4 - 7 = 1 and 4*10^2 + 724*10*10 + 10^2 = 270^2.
a(347) = 1 since 347 = 8^2 + 7^2 + 15^2 + 3^2 with 2*8 - 7 = 3^2 and 4*15^2 + 724*15*3 + 3^2 = 183^2.
a(888) = 1 since 888 = 14^2 + 12^2 + 8^2 + 22^2 with 2*14 - 12 = 4^2 and 4*8^2 + 724*8*22 + 22^2 = 358^2.
a(2559) = 1 since 2559 = 26^2 + 3^2 + 5^2 + 43^2 with 2*26 - 3 = 7^2 and 4*5^2 + 724*5*43 + 43^2 = 397^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[2x-y],Do[If[SQ[n-x^2-y^2-z^2]&&SQ[4z^2+724z*Sqrt[n-x^2-y^2-z^2]+(n-x^2-y^2-z^2)],r=r+1],{z,0,Sqrt[n-x^2-y^2]}]],{y,0,Sqrt[4n/5]},{x,Ceiling[y/2],Sqrt[n-y^2]}];Print[n," ",r];Continue,{n,0,80}]

A282562 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both 2*x - y and 9*z^2 + 666*z*w + w^2 are squares.

Original entry on oeis.org

1, 2, 2, 2, 4, 4, 5, 2, 3, 5, 2, 2, 1, 5, 6, 2, 2, 5, 5, 1, 5, 7, 8, 1, 3, 4, 2, 4, 3, 9, 7, 5, 2, 5, 5, 4, 8, 3, 9, 3, 4, 4, 5, 3, 1, 7, 6, 3, 2, 13, 7, 5, 5, 5, 8, 3, 2, 3, 5, 2, 1, 6, 10, 6, 4, 8, 9, 1, 7, 8, 11, 3, 3, 6, 6, 5, 3, 11, 4, 4, 4
Offset: 0

Views

Author

Zhi-Wei Sun, Feb 18 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 12, 19, 23, 44, 60, 67, 139, 140, 248, 264, 347, 427, 499, 636, 1388, 1867, 1964, 4843).
By the linked JNT paper, any nonnegative integer can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(z-w) = 0. Whether z = 0 or z = w, the number 9*z^2 + 666*z*w + w^2 is definitely a square.
See also A282561 for a similar conjecture.

Examples

			a(12) = 1 since 12 = 2^2 + 0^2 + 2^2 + 2^2 with 2*2 - 0 = 2^2 and 9*2^2 + 666*2*2 + 2^2 = 52^2.
a(19) = 1 since 19 = 1^2 + 1^2 + 4^2 + 1^2 with 2*1 - 1 = 1^2 and 9*4^2 + 666*4*1 + 1^2 = 53^2.
a(44) = 1 since 44 = 5^2 + 1^2 + 3^2 + 3^2 with 2*5 - 1 = 3^2 and 9*3^2 + 666*3*3 + 3^2 = 78^2.
a(60) = 1 since 60 = 3^2 + 5^2 + 1^2 + 5^2 with 2*3 - 5 = 1^2 and 9*1^2 + 666*1*5 + 5^2 = 58^2.
a(67) = 1 since 67 = 4^2 + 7^2 + 1^2 + 1^2 with 2*4 - 7 = 1^2 and 9*1^2 + 666*1*1 + 1^2 = 26^2.
a(139) = 1 since 139 = 8^2 + 7^2 + 1^2 + 5^2 with 2*8 - 7 = 3^2 and 9*1^2 + 666*1*5 + 5^2 = 58^2.
a(140) = 1 since 140 = 3^2 + 5^2 + 5^2 + 9^2 with 2*3 - 5 = 1^2 and 9*5^2 + 666*5*9 + 9^2 = 174^2.
a(264) = 1 since 264 = 8^2 + 0^2 + 10^2 + 10^2 with 2*8 - 0 = 4^2 and 9*10^2 + 666*10*10 + 10^2 = 260^2.
a(499) = 1 since 499 = 7^2 + 5^2 + 20^2 + 5^2 with 2*7 - 5 = 3^2 and 9*20^2 + 666*20*5 + 5^2 = 265^2.
a(1388) = 1 since 1388 = 15^2 + 21^2 + 19^2 + 19^2 with 2*15 - 21 = 3^2 and 9*19^2 + 666*19*19 + 19^2 = 494^2.
a(1867) = 1 since 1867 = 16^2 + 31^2 + 5^2 + 25^2 with 2*16 - 31 = 1^2 and 9*5^2 + 666*5*25 + 25^2 = 290^2.
a(4843) = 1 since 4843 = 11^2 + 13^2 + 52^2 + 43^2 with 2*11 - 13 = 3^2 and 9*52^2 + 666*52*43 + 43^2 = 1231^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[2x-y],Do[If[SQ[n-x^2-y^2-z^2]&&SQ[9z^2+666z*Sqrt[n-x^2-y^2-z^2]+(n-x^2-y^2-z^2)],r=r+1],{z,0,Sqrt[n-x^2-y^2]}]],{y,0,Sqrt[4n/5]},{x,Ceiling[y/2],Sqrt[n-y^2]}];Print[n," ",r];Continue,{n,0,80}]

A300356 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x + 63*y = 2^(2k+1) for some nonnegative integer k.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 3, 4, 2, 2, 4, 1, 2, 1, 1, 2, 4, 3, 1, 1, 2, 1, 6, 2, 2, 2, 5, 1, 4, 1, 2, 6, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 2, 1, 7, 3, 1, 4, 1, 2, 8, 1, 3, 7, 3, 4, 6, 3, 4, 4, 6, 5, 3, 2, 4, 3, 1, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 03 2018

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1, and a(n) = 1 only for n = 5, 13, 25, 29, 59, 61, 91, 95, 101, 103, 211, 247, 2^k (k = 1,2,...), 4^k*79 (k = 0,1,2,...), 2^(2k+1)*m (k = 0,1,2,... and m = 3, 5, 7, 11, 15, 19, 23).
(ii) Let r be 0 or 1, and let n > r. Then n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 15*y = 2^(2k+r) for some k = 0,1,2,.... Also, we can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that 16*x - 15*y = 2^(2k+r) for some k = 0,1,2,....
We have verified that a(n) > 0 for all n = 2..10^7.
See also A299924 and A300219 for similar conjectures.

Examples

			a(5) = 1 sine 5^2 = 2^2 + 2^2 + 1^2 + 4^2 with 2 + 63*2 = 2^7.
a(6) = 1 since 6^2 = 2^2 + 0^2 + 4^2 + 4^2 with 2 + 63*0 = 2^1.
a(10) = 1 since 10^2 = 8^2 + 0^2 + 0^2 + 6^2 with 8 + 63*0 = 2^3.
a(13) = 1 since 13^2 = 8^2 + 8^2 + 4^2 + 5^2 with 8 + 63*8 = 2^9.
a(59) = 1 since 59^2 = 32^2 + 32^2 + 8^2 + 37^2 with 32 + 63*32 = 2^11.
a(85) = 2 since 85^2 = 32^2 + 0^2 + 24^2 + 75^2 = 32^2 + 0^2 + 51^2 + 60^2 with 32 + 63*0 = 2^5.
a(86) = 3 since 86^2 = 65^2 + 1^2 + 19^2 + 53^2 = 65^2 + 1^2 + 31^2 + 47^2 = 71^2 + 7^2 + 25^2 + 41^2 with 65 + 63*1 = 2^7 and 71 + 63*7 = 2^9.
a(247) = 1 since 247^2 = 2^2 + 2^2 + 76^2 + 235^2 with 2 + 63*2 = 2^7.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]]
    tab={};Do[r=0;Do[If[SQ[n^2-x^2-y^2-z^2]&&Pow[(x+63y)/2],r=r+1],{x,0,n},{y,0,Min[x,Sqrt[n^2-x^2]]},{z,0,Sqrt[(n^2-x^2-y^2)/2]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A301303 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x^2 + 23*y^2 = 2^k*m^3 for some k = 0,1,2 and m = 1,2,3,....

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 2, 4, 2, 1, 3, 5, 3, 5, 5, 4, 3, 3, 3, 5, 3, 3, 4, 6, 2, 1, 4, 3, 4, 5, 3, 4, 2, 3, 6, 5, 2, 4, 6, 4, 2, 2, 3, 6, 3, 3, 4, 6, 4, 4, 5, 4, 4, 5, 2, 4, 4, 1, 7, 8, 2, 7, 8, 5, 3, 5, 5, 7, 4, 5, 6, 5, 2, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 17 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 2^k (k = 0,1,2,...), 3, 7, 115, 151, 219, 267, 1151, 1367.
We have verified a(n) > 0 for all n = 1..10^8.
See also A301304 and A301314 for similar conjectures.

Examples

			a(2) = 1 since 2 = 1^2 + 0^2 + 0^2 + 1^2 with 1 + 23*0 = 1^3.
a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2^2 + 23*0 = 2^2*1^3.
a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2^2 + 23*1^2 = 3^3.
a(48) = 2 since 48 = 4^2 + 0^2 + 4^2 + 4^2 = 6^2 + 2^2 + 2^2 + 2^2 with 4^2 + 23*0^2 = 2*2^3 and 6^2 + 23*2^2 = 2*4^3.
a(115) = 1 since 115 = 3^2 + 3^2 + 4^2 + 9^2 with 3^2 + 23*3^2 = 6^3.
a(267) = 1 since 267 = 3^2 + 1^2 + 1^2 + 16^2 with 3^2 + 23*1^2 = 2^2*2^3.
a(1151) = 1 since 1151 = 7^2 + 3^2 + 2^2 + 33^2 with 7^2 + 23*3^2 = 2^2*4^3.
a(1367) = 1 since 1367 = 17^2 + 5^2 + 18^2 + 27^2 with 17^2 + 23*5^2 = 2^2*6^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
    QQ[n_]:=n>0&&(CQ[n]||CQ[n/2]||CQ[n/4]);
    tab={};Do[r=0;Do[If[QQ[x^2+23y^2],Do[If[SQ[n-x^2-y^2-z^2],r=r+1],{z,0,Sqrt[(n-x^2-y^2)/2]}]],{y,0,Sqrt[n/2]},{x,y,Sqrt[n-y^2]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A301304 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x^2 + 7*y^2 = 2^k*m for some k = 0,1,2 and m = 1,2,3,....

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 1, 2, 3, 4, 3, 4, 2, 3, 2, 2, 4, 5, 3, 4, 4, 2, 1, 3, 2, 6, 5, 4, 3, 4, 2, 2, 6, 5, 4, 6, 3, 3, 3, 4, 6, 8, 2, 5, 5, 3, 2, 4, 4, 5, 6, 5, 5, 4, 3, 3, 6, 5, 2, 6, 3, 4, 3, 2, 6, 10, 3, 5, 8, 1, 2, 5, 5, 6, 5, 6, 5, 3, 1, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 17 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
We have verified this for n up to 10^8.
See also A301303 and A301314 for similar conjectures.

Examples

			a(79) = 1 since 79 = 5^2 + 1^2 + 2^2 + 7^2 with 5^2 + 7*1^2 = 2^2*2^3.
a(323) = 1 since 323 = 3^2 + 1^2 + 12^2 + 13^2 with 3^2 + 7*1^2 = 2*2^3.
a(646) = 1 since 646 = 22^2 + 11^2 + 4^2 + 5^2 with 22^2 + 7*11^2 = 11^3.
a(815) = 1 since 815 = 9^2 + 5^2 + 15^2 + 22^2 with 9^2 + 7*5^2 = 2^2*4^3.
a(1111) = 1 since 1111 = 1^2 + 1^2 + 22^2 + 25^2 with 1^2 + 7*1^2 = 2^3.
a(2822) = 1 since 2822 = 2^2 + 0^2 + 3^2 + 53^2 with 2^2 + 7*0^2 = 2^2*1^3.
		

Crossrefs

Programs

  • Mathematica
      SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];
    QQ[n_]:=n>0&&(CQ[n]||CQ[n/2]||CQ[n/4]);
    tab={};Do[r=0;Do[If[QQ[x^2+7y^2],Do[If[SQ[n-x^2-y^2-z^2],r=r+1],{z,0,Sqrt[(n-x^2-y^2)/2]}]],{y,0,Sqrt[n/2]},{x,y,Sqrt[n-y^2]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Previous Showing 41-50 of 70 results. Next