cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A282078 Number of 10-element subsets of [n+10] having an even sum.

Original entry on oeis.org

0, 5, 30, 140, 490, 1491, 3976, 9696, 21816, 46126, 92252, 176232, 323092, 571802, 980232, 1633984, 2655224, 4217499, 6560554, 10014004, 15021006, 22174581, 32253936, 46278336, 65560976, 91786604, 127089144, 174160784, 236361064, 317866884, 423822512
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(1) = 5: {1,2,3,4,5,6,7,8,9,11}, {1,2,3,4,5,6,7,9,10,11}, {1,2,3,4,5,7,8,9,10,11}, {1,2,3,5,6,7,8,9,10,11}, {1,3,4,5,6,7,8,9,10,11}.
		

Crossrefs

Column k=10 of A282011.

Programs

  • PARI
    concat(0, Vec(-x*(x^4+10*x^2+5)/((1+x)^5*(x-1)^11) + O(x^30))) \\ Colin Barker, Feb 06 2017

Formula

G.f.: -x*(x^4+10*x^2+5)/((1+x)^5*(x-1)^11).
a(n) = (-2735775*(-1+(-1)^n) - 45*(-344851 + 56595*(-1)^n)*n + (22908402-803250*(-1)^n)*n^2 - 50*(-325607+2079*(-1)^n)*n^3 + (6781885-4725*(-1)^n)*n^4 + 1802220*n^5 + 315546*n^6 + 36300*n^7 + 2640*n^8 + 110*n^9 + 2*n^10) / 14515200. - Colin Barker, Feb 06 2017

A282079 Number of n-element subsets of [n+2] having an even sum.

Original entry on oeis.org

1, 1, 2, 6, 9, 9, 12, 20, 25, 25, 30, 42, 49, 49, 56, 72, 81, 81, 90, 110, 121, 121, 132, 156, 169, 169, 182, 210, 225, 225, 240, 272, 289, 289, 306, 342, 361, 361, 380, 420, 441, 441, 462, 506, 529, 529, 552, 600, 625, 625, 650, 702, 729, 729, 756, 812, 841
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(3) = 6: {1,2,3}, {1,2,5}, {1,3,4}, {1,4,5}, {2,3,5}, {3,4,5}.
a(4) = 9: {1,2,3,4}, {1,2,3,6}, {1,2,4,5}, {1,2,5,6}, {1,3,4,6}, {1,4,5,6}, {2,3,4,5}, {2,3,5,6}, {3,4,5,6}.
		

Crossrefs

Cf. A282011.

Programs

  • PARI
    Vec(-(x^4-2*x^3+4*x^2-2*x+1) / ((x^2+1)^2*(x-1)^3) + O(x^90)) \\ Colin Barker, Feb 06 2017

Formula

G.f.: -(x^4-2*x^3+4*x^2-2*x+1)/((x^2+1)^2*(x-1)^3).
a(n) = A282011(n+2,n).
a(n) = (2*(1+n)*(2+n) - i*(-i)^n*((1+2*i)+(1+i)*n) + i^n*((2+i)+(1+i)*n))/8 where i=sqrt(-1). - Colin Barker, Feb 06 2017

A282080 Number of n-element subsets of [n+4] having an even sum.

Original entry on oeis.org

1, 2, 6, 19, 38, 60, 100, 170, 255, 350, 490, 693, 924, 1176, 1512, 1956, 2445, 2970, 3630, 4455, 5346, 6292, 7436, 8814, 10283, 11830, 13650, 15785, 18040, 20400, 23120, 26248, 29529, 32946, 36822, 41211, 45790, 50540, 55860, 61810, 67991, 74382, 81466, 89309
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(2) = 6: {1,3}, {1,5}, {2,4}, {2,6}, {3,5}, {4,6}.
a(3) = 19: {1,2,3}, {1,2,5}, {1,2,7}, {1,3,4}, {1,3,6}, {1,4,5}, {1,4,7}, {1,5,6}, {1,6,7}, {2,3,5}, {2,3,7}, {2,4,6}, {2,5,7}, {3,4,5}, {3,4,7}, {3,5,6}, {3,6,7}, {4,5,7}, {5,6,7}.
		

Crossrefs

Cf. A282011.

Programs

  • Mathematica
    CoefficientList[Series[-(x^2 - x + 1)*(x^4 - 2*x^3 + 6*x^2 - 2*x + 1)/((x^2 + 1)^3*(x - 1)^5), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jan 01 2024 *)
  • PARI
    Vec(-(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5) + O(x^90)) \\ Colin Barker, Feb 06 2017

Formula

G.f.: -(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5).
a(n) = A282011(n+4,n).
a(n) = (2*(1+n)*(2+n)*(3+n)*(4+n) + 3*(-i*(-i)^n*((3+8*i) + (4+6*i)*n + (1+i)*n^2) + i^n*((8+3*i) + (6+4*i)*n + (1+i)*n^2)))/96 where i=sqrt(-1). - Colin Barker, Feb 06 2017

A282081 Number of n-element subsets of [n+5] having an even sum.

Original entry on oeis.org

1, 3, 9, 28, 66, 126, 226, 396, 651, 1001, 1491, 2184, 3108, 4284, 5796, 7752, 10197, 13167, 16797, 21252, 26598, 32890, 40326, 49140, 59423, 71253, 84903, 100688, 118728, 139128, 162248, 188496, 218025, 250971, 287793, 329004, 374794, 425334, 481194, 543004
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 3: {2}, {4}, {6}.
a(2) = 9: {1,3}, {1,5}, {1,7}, {2,4}, {2,6}, {3,5}, {3,7}, {4,6}, {5,7}.
		

Crossrefs

Cf. A282011.

Programs

  • Mathematica
    LinearRecurrence[{6,-18,38,-63,84,-92,84,-63,38,-18,6,-1},{1,3,9,28,66,126,226,396,651,1001,1491,2184},40] (* Harvey P. Dale, Sep 30 2019 *)
  • PARI
    Vec((x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1) / ((x^2+1)^3*(x-1)^6) + O(x^60)) \\ Colin Barker, Feb 06 2017

Formula

G.f.: (x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^6).
a(n) = A282011(n+5,n).
a(n) = (1+n)*(2+n)*(3+n)*(4+n)*(5+n)/240 + ((-i)^n+i^n)*(8+6*n+n^2)/32 where i=sqrt(-1). - Colin Barker, Feb 06 2017

A282082 Number of n-element subsets of [n+6] having an even sum.

Original entry on oeis.org

1, 3, 12, 44, 110, 226, 452, 868, 1519, 2485, 3976, 6216, 9324, 13524, 19320, 27192, 37389, 50391, 67188, 88660, 115258, 147862, 188188, 237692, 297115, 367913, 452816, 554064, 672792, 811240, 973488, 1162800, 1380825, 1630827, 1918620, 2248764, 2623558
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 3: {2}, {4}, {6}.
a(2) = 12: {1,3}, {1,5}, {1,7}, {2,4}, {2,6}, {2,8}, {3,5}, {3,7}, {4,6}, {4,8}, {5,7}, {6,8}.
		

Crossrefs

Cf. A282011.

Formula

G.f.: -(x^8-4*x^7+16*x^6-28*x^5+38*x^4-28*x^3+16*x^2-4*x+1) / ((x^2+1)^4*(x-1)^7).
a(n) = A282011(n+6,n).

A282083 Number of n-element subsets of [n+7] having an even sum.

Original entry on oeis.org

1, 4, 16, 60, 170, 396, 848, 1716, 3235, 5720, 9696, 15912, 25236, 38760, 58080, 85272, 122661, 173052, 240240, 328900, 444158, 592020, 780208, 1017900, 1315015, 1682928, 2135744, 2689808, 3362600, 4173840, 5147328, 6310128, 7690953, 9321780, 11240400
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 4: {2}, {4}, {6}, {8}.
a(2) = 16: {1,3}, {1,5}, {1,7}, {1,9}, {2,4}, {2,6}, {2,8}, {3,5}, {3,7}, {3,9}, {4,6}, {4,8}, {5,7}, {5,9}, {6,8}, {7,9}.
		

Crossrefs

Cf. A282011.

Formula

G.f.: (x^8-4*x^7+16*x^6-28*x^5+38*x^4-28*x^3+16*x^2-4*x+1) / ((x^2+1)^4*(x-1)^8).
a(n) = A282011(n+7,n).

A282084 Number of n-element subsets of [n+8] having an even sum.

Original entry on oeis.org

1, 4, 20, 85, 255, 636, 1484, 3235, 6470, 12120, 21816, 37854, 63090, 101640, 159720, 245322, 367983, 540540, 780780, 1110395, 1554553, 2145572, 2925780, 3945045, 5260060, 6941168, 9076912, 11769100, 15131700, 19302480, 24449808, 30763812, 38454765, 47771700
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 4: {2}, {4}, {6}, {8}.
a(2) = 20: {1,3}, {1,5}, {1,7}, {1,9}, {2,4}, {2,6}, {2,8}, {2,10}, {3,5}, {3,7}, {3,9}, {4,6}, {4,8}, {4,10}, {5,7}, {5,9}, {6,8}, {6,10}, {7,9}, {8,10}.
		

Crossrefs

Cf. A282011.

Formula

G.f.: -(x^2-x+1)*(x^8-4*x^7+20*x^6-36*x^5+54*x^4-36*x^3+20*x^2-4*x+1) / ((x^2+1)^5*(x-1)^9).
a(n) = A282011(n+8,n).

A282085 Number of n-element subsets of [n+9] having an even sum.

Original entry on oeis.org

1, 5, 25, 110, 365, 1001, 2485, 5720, 12190, 24310, 46126, 83980, 147070, 248710, 408430, 653752, 1021735, 1562275, 2343055, 3453450, 5008003, 7153575, 10079355, 14024400, 19284460, 26225628, 35302540, 47071640, 62203340, 81505820, 105955628, 136719440
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Examples

			a(0) = 1: {}.
a(1) = 5: {2}, {4}, {6}, {8}, {10}.
a(2) = 25: {1,3}, {1,5}, {1,7}, {1,9}, {1,11}, {2,4}, {2,6}, {2,8}, {2,10}, {3,5}, {3,7}, {3,9}, {3,11}, {4,6}, {4,8}, {4,10}, {5,7}, {5,9}, {5,11}, {6,8}, {6,10}, {7,9}, {7,11}, {8,10}, {9,11}.
		

Crossrefs

Cf. A282011.

Programs

  • Mathematica
    T[n_, k_] := Sum[Binomial[Ceiling[n/2], 2 j] Binomial[Floor[n/2], k - 2 j], {j, 0, Floor[(n + 1)/4]}]; Table[T[n + 9, n], {n, 0, 31}] (* or *) CoefficientList[Series[(x^2 - x + 1) (x^8 - 4 x^7 + 20 x^6 - 36 x^5 + 54 x^4 - 36 x^3 + 20 x^2 - 4 x + 1)/((x^2 + 1)^5 (x - 1)^10), {x, 0, 31}], x] (* Indranil Ghosh, Feb 26 2017 *)

Formula

G.f.: (x^2-x+1)*(x^8-4*x^7+20*x^6-36*x^5+54*x^4-36*x^3+20*x^2-4*x+1) / ((x^2+1)^5*(x-1)^10).
a(n) = A282011(n+9,n).

A282086 Number of n-element subsets of [n+10] having an even sum.

Original entry on oeis.org

1, 5, 30, 146, 511, 1491, 3976, 9752, 21942, 46126, 92252, 176484, 323554, 571802, 980232, 1634776, 2656511, 4217499, 6560554, 10016006, 15024009, 22174581, 32253936, 46282704, 65567164, 91786604, 127089144, 174169352, 236372692, 317866884, 423822512
Offset: 0

Views

Author

Alois P. Heinz, Feb 05 2017

Keywords

Crossrefs

Cf. A282011.

Formula

G.f.: -(x^4-2*x^3+4*x^2-2*x+1) * (x^8-4*x^7+24*x^6-44*x^5+62*x^4-44*x^3 + 24*x^2-4*x+1) / ((x^2+1)^6*(x-1)^11).
a(n) = A282011(n+10,n).
Previous Showing 11-19 of 19 results.