cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A284100 a(n) = Sum_{d|n, d == 1 (mod 8)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 18, 10, 1, 1, 1, 1, 1, 1, 26, 1, 10, 1, 1, 1, 1, 1, 34, 18, 1, 10, 1, 1, 1, 1, 42, 1, 1, 1, 10, 1, 1, 1, 50, 26, 18, 1, 1, 10, 1, 1, 58, 1, 1, 1, 1, 1, 10, 1, 66, 34, 1, 18, 1, 1, 1, 10, 74, 1, 26, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Crossrefs

Cf. A277090.
Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), this sequence (k=8).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 8] == 1, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,8]==1&]],{n,80}] (* or *) Table[DivisorSum[n,#&,Mod[#,8]==1&],{n,80}] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(Mod(d, 8)==1, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%8==1]) # Indranil Ghosh, Mar 21 2017

Formula

G.f.: Sum_{k>=0} (8*k + 1)*x^(8*k+1)/(1 - x^(8*k+1)). - Ilya Gutkovskiy, Mar 21 2017
G.f.: Sum_{n >= 1} x^n*(1 + 7*x^(8*n))/(1 - x^(8*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/96 = 0.102808... . - Amiram Eldar, Nov 26 2023

A284499 Expansion of Product_{k>=0} (1 - x^(7*k+1)) in powers of x.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, -1, 3, -2, 0, 0, 0, 0, -1, 3, -3, 1, 0, 0, 0, -1, 4, -4, 1, 0, 0, 0, -1, 4, -5, 2, 0, 0, 0, -1, 5, -7, 3, 0, 0, 0, -1, 5, -8, 5, -1, 0, 0, -1, 6, -10
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(7*k+m)): this sequence (m=1), A284500 (m=2), A284501 (m=3), A284502 (m=4), A284503 (m=5), A284504 (m=6).
Cf. A280457.

Programs

  • Maple
    G:= mul(1-x^(7*k+1),k=0..100/7):
    S:= series(G,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Mar 29 2017
  • Mathematica
    CoefficientList[Series[Product[1 - x^(7k + 1), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 28 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(7*k + 1)) + O(x^101)) \\ Indranil Ghosh, Mar 28 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} A284099(k)*a(n-k), a(0) = 1.

A284151 Sum_{d|n, d=1 or 6 mod 7} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 9, 1, 1, 1, 7, 14, 1, 16, 9, 1, 7, 1, 21, 1, 23, 1, 15, 1, 14, 28, 1, 30, 22, 1, 9, 1, 35, 1, 43, 1, 1, 14, 29, 42, 7, 44, 23, 16, 1, 1, 63, 1, 51, 1, 14, 1, 34, 56, 9, 58, 30, 1, 42, 1, 63, 1, 73, 14, 29, 1, 35, 70, 1, 72, 51, 1, 1, 16, 77, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d=1 or k-1 mod k} d: A046913 (k=3), A000593 (k=4), A284150 (k=5), A186099 (k=6), this sequence (k=7).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] == 1 || Mod[d, 7]==6, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(d%7==1 || d%7==6, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%7==1 or d%7 == 6]) # Indranil Ghosh, Mar 21 2017

Formula

a(n) = A284099(n) + A284105(n). - R. J. Mathar, Mar 21 2017

A357912 a(n) = Sum_{d|n, d==1 (mod 11)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 35, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 46, 24, 1, 13, 1, 1, 1, 1, 1, 1, 1, 57, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 68, 35, 24, 1, 1, 13, 1, 1, 1, 1, 1, 79, 1, 1, 1, 1, 1, 13, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2023

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8), this sequence (k=11).
Cf. A357911.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[#, 11] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (Mod(d, 11)==1)*d);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=0, N, (11*k+1)*x^(11*k+1)/(1-x^(11*k+1))))

Formula

G.f.: Sum_{k>=0} (11*k+1) * x^(11*k+1)/(1 - x^(11*k+1)).
Previous Showing 11-14 of 14 results.