cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A309748 The number of non-equivalent distinguishing coloring partitions of the path on n vertices (n>=1) with exactly k parts (k>=1). Regular triangle read by rows: the rows are indexed by n, the number of vertices of the path, and the columns are indexed by k, the number of parts.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 6, 14, 6, 1, 0, 16, 49, 37, 9, 1, 0, 28, 154, 182, 76, 12, 1, 0, 64, 496, 876, 542, 142, 16, 1, 0, 120, 1520, 3920, 3522, 1346, 242, 20, 1, 0, 256, 4705, 17175, 21392, 11511, 2980, 390, 25, 1, 0, 496, 14266, 73030, 123665, 89973, 32141, 5990, 595, 30, 1
Offset: 1

Views

Author

Keywords

Comments

A vertex-coloring of a graph G is called distinguishing if it is only preserved by the identity automorphism of G. This notion is considered in the subject of symmetry breaking of simple (finite or infinite) graphs. A distinguishing coloring partition of a graph G is a partition of the vertices of G such that it induces a distinguishing coloring for G. We say two distinguishing coloring partitions P1 and P2 of G are equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. Given a graph G, we use the notation psi_k(G) to denote the number of non-equivalent distinguishing coloring partitions of G with at exactly k parts. For n>=1, this sequence gives T(n,k) = psi_k(P_n), i.e., the number of non-equivalent distinguishing coloring partitions of the path P_n on n vertices with exactly k parts.
Also, for n > 1 the number of reversible string structures of length n using exactly k different symbols that are not equivalent to their reversal (compare A284949). - Andrew Howroyd, Aug 15 2019

Examples

			The triangle begins:
  1;
  0,   1;
  0,   1,    1;
  0,   4,    4,     1;
  0,   6,   14,     6,     1;
  0,  16,   49,    37,     9,     1;
  0,  28,  154,   182,    76,    12,    1;
  0,  64,  496,   876,   542,   142,   16,   1;
  0, 120, 1520,  3920,  3522,  1346,  242,  20,  1;
  0, 256, 4705, 17175, 21392, 11511, 2980, 390, 25, 1;
  ...
----
For n=4, we can partition the vertices of P_4 into exactly 3 parts in 4 ways such that all these partitions induce distinguishing colorings for P_4 and that all the 4 partitions are non-equivalent. The partitions are as follows:
    { { 1 }, { 2 }, { 3, 4 } }
    { { 1 }, { 2, 3 }, { 4 } }
    { { 1 }, { 2, 4 }, { 3 } }
    { { 1, 4 }, { 2 }, { 3 } }
		

Crossrefs

Columns k=2..4 are A007179, A327610, A327611.
Row sums are A327612(n > 1).

Programs

  • PARI
    \\ Ach is A304972 as square matrix.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    T(n)={(matrix(n, n, i, k, stirling(i, k, 2) - 2*stirling((i+1)\2, k, 2)) + Ach(n))/2}
    { my(A=T(10)); A[1,1]=1; for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 18 2019

Formula

T(n,k) = A309635(n,k) - A309635(n,k-1) for k > 1.
T(n,k) = A284949(n,k) - Stirling2(ceiling(n/2), k) for n > 1. - Andrew Howroyd, Aug 15 2019

Extensions

Terms a(56) and beyond from Andrew Howroyd, Sep 18 2019

A056328 Number of reversible string structures with n beads using exactly four different colors.

Original entry on oeis.org

0, 0, 0, 1, 6, 37, 183, 877, 3930, 17185, 73095, 306361, 1267266, 5198557, 21182343, 85910917, 347187210, 1399451545, 5629911015, 22616256721, 90754855026, 363890126677, 1458172596903, 5840531635357, 23385650196090
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
Number of set partitions for an unoriented row of n elements using exactly four different elements. An unoriented row is equivalent to its reverse. - Robert A. Russell, Oct 14 2018

Examples

			For a(5)=6, the color patterns are ABCDA, ABCBD, AABCD, ABACD, ABCAD, and ABBCD. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A284949.
Cf. A056311.
Cf. A000453 (oriented), A320527 (chiral), A304974 (achiral).

Programs

  • Mathematica
    k=4; Table[(StirlingS2[n,k] + If[EvenQ[n], StirlingS2[n/2+2,4] - StirlingS2[n/2+1,4] - 2StirlingS2[n/2,4], 2StirlingS2[(n+3)/2,4] - 4StirlingS2[(n+1)/2,4]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
    Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
    k = 4; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
    LinearRecurrence[{8, -12, -44, 121, 12, -228, 144}, {0, 0, 0, 1, 6, 37, 183}, 30] (* Robert A. Russell, Oct 14 2018 *)

Formula

a(n) = A056323(n) - A001998(n-1).
Empirical g.f.: -x^4*(3*x^3 + x^2 - 2*x + 1) / ((x-1)*(2*x-1)*(2*x+1)*(3*x-1)*(4*x-1)*(3*x^2-1)). - Colin Barker, Nov 25 2012
From Robert A. Russell, Oct 14 2018: (Start)
a(n) = (S2(n,k) + A(n,k))/2, where k=4 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
a(n) = (A000453(n) + A304974(n)) / 2 = A000453(n) - A320527(n) = A320527(n) + A304974(n). (End)

A056329 Number of reversible string structures with n beads using exactly five different colors.

Original entry on oeis.org

0, 0, 0, 0, 1, 9, 76, 542, 3523, 21393, 123680, 690550, 3756151, 20042589, 105394296, 548123982, 2826435403, 14479204833, 73794961960, 374603884910, 1895632969351, 9568915372269, 48208452866816
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
Number of set partitions for an unoriented row of n elements using exactly five different elements. An unoriented row is equivalent to its reverse. - Robert A. Russell, Oct 14 2018

Examples

			For a(6)=9, the color patterns are ABCDEA, ABCDBA, ABCCDE, AABCDE, ABACDE, ABCADE, ABCDAE, ABBCDE, and ABCBDE. The first three are achiral. - _Robert A. Russell_, Oct 14 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 5 of A284949.
Cf. A056312.
Cf. A000481 (oriented), A320528 (chiral), A304975 (achiral).

Programs

  • Mathematica
    k=5; Table[(StirlingS2[n,k] + If[EvenQ[n], 3StirlingS2[n/2+2,5] - 11StirlingS2[n/2+1,5] + 6StirlingS2[n/2,5], StirlingS2[(n+5)/2,5] - 3StirlingS2[(n+3)/2,5]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
    Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
    k=5; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
    LinearRecurrence[{13, -48, -36, 551, -683, -1542, 3546, 80, -4280, 2400}, {0, 0, 0, 0, 1, 9, 76, 542, 3523, 21393}, 30] (* Robert A. Russell, Oct 14 2018 *)

Formula

a(n) = A056324(n) - A056323(n).
Empirical g.f.: -x^5*(70*x^5 - 102*x^4 + 22*x^3 + 7*x^2 - 4*x + 1) / ((x-1)*(2*x-1)*(2*x+1)*(3*x-1)*(4*x-1)*(5*x-1)*(2*x^2-1)*(5*x^2-1)). - Colin Barker, Nov 25 2012
From Robert A. Russell, Oct 14 2018: (Start)
a(n) = (S2(n,k) + A(n,k))/2, where k=5 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
a(n) = (A000481(n) + A304975(n)) / 2 = A000481(n) - A320528(n) = A320528(n) + A304975(n). (End)

A056330 Number of reversible string structures with n beads using exactly six different colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 12, 142, 1346, 11511, 89974, 662674, 4662574, 31724735, 210361046, 1367510326, 8752976610, 55343947975, 346541488998, 2153041587538, 13292844257198, 81652683550119, 499484958151630
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
Number of set partitions for an unoriented row of n elements using exactly six different elements. An unoriented row is equivalent to its reverse. - Robert A. Russell, Oct 14 2018

Examples

			For a(7)=12, the color patterns are ABCDEFA, ABCDEBF, ABCDCEF, AABCDEF, ABACDEF, ABCADEF, ABCDAEF, ABBCDEF, ABCBDEF, ABCDBEF, and ABCCDEF. The first three are achiral. - _Robert A. Russell_, Oct 14 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 6 of A284949.
Cf. A056313.
Cf. A000770 (oriented), A320529 (chiral), A304976 (achiral).

Programs

  • Mathematica
    k=6; Table[(StirlingS2[n,k] + If[EvenQ[n], StirlingS2[n/2+3,6] - 3StirlingS2[n/2+2,6] - 8StirlingS2[n/2+1,6] + 16StirlingS2[n/2,6], 3StirlingS2[(n+5)/2,6] - 17StirlingS2[(n+3)/2,6] + 20StirlingS2[(n+1)/2,6]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
    Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
    k = 6; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
    LinearRecurrence[{21, -159, 399, 1085, -8085, 9555, 34125, -98644, 5544, 253764, -248724, -136800, 317520, -129600}, {0, 0, 0, 0, 0, 1, 12, 142, 1346, 11511, 89974, 662674, 4662574, 31724735}, 40] (* Robert A. Russell, Oct 14 2018 *)

Formula

a(n) = A056325(n) - A056324(n).
From Robert A. Russell, Oct 14 2018: (Start)
a(n) = (S2(n,k) + A(n,k))/2, where k=6 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
G.f.: (x^6 / Product_{k=1..6} (1 - k*x) + x^6 (1+x) (1-4x^2) (1+2x-x^2-4x^3) / Product_{k=1..6} (1 - k*x^2)) / 2.
a(n) = (A000770(n) + A304976(n)) / 2 = A000770(n) - A320529(n) = A320529(n) + A304976(n). (End)

A285951 Positions of 1's in A285949; complement of A285950.

Original entry on oeis.org

2, 6, 9, 11, 15, 17, 20, 24, 27, 29, 32, 36, 38, 42, 45, 47, 51, 53, 56, 60, 62, 66, 69, 71, 74, 78, 81, 83, 87, 89, 92, 96, 99, 101, 104, 108, 110, 114, 117, 119, 122, 126, 129, 131, 135, 137, 140, 144, 146, 150, 153, 155, 159, 161, 164, 168, 171, 173, 176
Offset: 1

Views

Author

Clark Kimberling, May 02 2017

Keywords

Comments

Conjecture: 3n - a(n) is in {0, 1} for all n >= 1.
From Michel Dekking, Sep 03 2019: (Start)
Proof of the conjecture by Kimberling: more is true. Here follows a proof of the formula below. Let T be the transform T(01)=0, T(1)=0.
Consider the return word structure of A285949 for the word 1:
A285949 = 0|1000|100|10|1000|10|100| ....
[See Justin & Vuillon (2000) for definition of return word. - N. J. A. Sloane, Sep 23 2019]
The three return words are u:=10, v:=100 and w:=1000. These words uniquely correspond to the conjugated three words u'=01, v'=010, w'=0100 in A285949, which are the unique images u'=T(0), v'=T(01) and w'=T(011) of the words 0, 01 and 011 in the Thue-Morse word A010060. The images of these three words under the Thue-Morse morphism 0->01, 1->10 are 01, 0110 and 011010, and we have
T(01)=010, T(0110)=010001, T(011010)=010001001.
Shifting by 1 in A285949, these correspond uniquely to the conjugated words 100, 100010, and 100010010. It follows that the Thue-Morse morphism induces the morphism u->v, v->wu, w->wvu on the return words.
This morphism is modulo a change of alphabet equal to the ternary Thue-Morse morphism with fixed point A007413.
Note that on the alphabet {4,3,2} of the respective lengths of w, v, and u we obtain the sequence (a(n+1)-a(n)) = 4,3,2,4,2,3,4,3,2,... of first differences of the positions of the 1's in A285949.
To prove the formula a(n) = A010060(n)+ 3n-1, it suffices to show that a(n+1)-a(n) = A010060(n+1)-A010060(n)+3.
That this indeed is true: see the Comments of A029883, the first differences of the standard form of the Thue-Morse sequence A001285.
(End)

Examples

			As a word, A285949 = 0100010010100010100100010..., in which 1 is in positions  2,6,9,11,...
		

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 7]  (* Thue-Morse, A010060 *)
    w = StringJoin[Map[ToString, s]]
    w1 = StringReplace[w, {"0" -> "01", "1" -> "0"}]  (* A284949, word *)
    st = ToCharacterCode[w1] - 48 (* A284949, sequence *)
    Flatten[Position[st, 0]] (* A285950 *)
    Flatten[Position[st, 1]] (* A285951 *)
  • Python
    def A285951(n): return ((n-1).bit_count()&1)+3*n-1 # Chai Wah Wu, May 21 2025

Formula

a(n) = A010060(n) + 3n-1. - Michel Dekking, Sep 03 2019

A309635 The number of non-equivalent distinguishing coloring partitions of the path on n vertices (n>=1) with at most k parts (k>=1). Square array read by descending antidiagonals: the rows are indexed by n, the number of vertices of the path, and the columns are indexed by k, the number of parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 4, 0, 1, 1, 2, 8, 6, 0, 1, 1, 2, 9, 20, 16, 0, 1, 1, 2, 9, 26, 65, 28, 0, 1, 1, 2, 9, 27, 102, 182, 64, 0, 1, 1, 2, 9, 27, 111, 364, 560, 120, 0, 1, 1, 2, 9, 27, 112, 440, 1436, 1640, 256, 0
Offset: 1

Views

Author

Keywords

Comments

A vertex-coloring of a graph G is called distinguishing if it is only preserved by the identity automorphism of G. This notion is considered in the subject of symmetry breaking of simple (finite or infinite) graphs. A distinguishing coloring partition of a graph G is a partition of the vertices of G such that it induces a distinguishing coloring for G. We say two distinguishing coloring partitions P1 and P2 of G are equivalent if there is a nontrivial automorphism of G which maps P1 onto P2. Given a graph G, we use the notation Psi_k(G) to denote the number of non-equivalent distinguishing coloring partitions of G with at most k parts. This sequence gives A(n,k) = Psi_k(P_n), i.e., the number of non-equivalent distinguishing coloring partitions of the path P_n on n vertices with at most k parts.
Note that, for any graph G, Psi_k(G) = Sum_{i<=k} psi_i(G), where psi_i(G) is the number of non-equivalent distinguishing coloring partitions of G with exactly i parts. For instance, here we have T(n,k) = Sum_{i<=k} A309748(n,i).

Examples

			Table begins:
  ======================================================================
  n\k| 1    2     3      4      5      6      7      8      9     10
  ---+------------------------------------------------------------------
   1 | 1,   1,    1,     1,     1,     1,     1,     1,     1,     1 ...
   2 | 0,   1,    1,     1,     1,     1,     1,     1,     1,     1 ...
   3 | 0,   1,    2,     2,     2,     2,     2,     2,     2,     2 ...
   4 | 0,   4,    8,     9,     9,     9,     9,     9,     9,     9 ...
   5 | 0,   6,   20,    26,    27,    27,    27,    27,    27,    27 ...
   6 | 0,  16,   65,   102,   111,   112,   112,   112,   112,   112 ...
   7 | 0,  28,  182,   364,   440,   452,   453,   453,   453,   453 ...
   8 | 0,  64,  560,  1436,  1978,  2120,  2136,  2137,  2137,  2137 ...
   9 | 0, 120, 1640,  5560,  9082, 10428, 10670, 10690, 10691, 10691 ...
  10 | 0, 256, 4961, 22136, 43528, 55039, 58019, 58409, 58434, 58435 ...
  ...
For n=4, we can partition the vertices of P_4 into at most 3 parts in 8 ways such that all these partitions induce distinguishing colorings for P_4 and that all the 8 partitions are non-equivalent. The partitions are as follows:
    { { 1 }, { 2 }, { 3, 4 } }
    { { 1 }, { 2, 3 }, { 4 } }
    { { 1 }, { 2, 4 }, { 3 } }
    { { 1, 4 }, { 2 }, { 3 } }
    { { 1 }, { 2, 3, 4 } }
    { { 1, 2 }, { 3, 4 } }
    { { 1, 2, 4 }, { 3 } }
    { { 1, 3 }, { 2, 4 } }
		

Crossrefs

Column k=2 is A007179(n > 1).

Formula

T(n, k) = Sum_{i=1..k} A309748(n,i).

A327610 Number of length n reversible string structures that are not palindromic using exactly three different colors.

Original entry on oeis.org

0, 0, 1, 4, 14, 49, 154, 496, 1520, 4705, 14266, 43384, 130844, 394849, 1187614, 3571936, 10729040, 32222785, 96724306, 290313064, 871172324, 2614069249, 7843168774, 23531688976, 70598997560, 211805640865, 635432906746, 1906333059544, 5719063904204
Offset: 1

Views

Author

Andrew Howroyd, Sep 18 2019

Keywords

Crossrefs

Column k=3 of A309748.

Programs

  • PARI
    concat([0,0], Vec((1 - 2*x - 4*x^2 + 13*x^3 - 9*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 2*x^2)*(1 - 3*x^2)) + O(x^30)))

Formula

a(n) = A056327 - A000392(ceiling(n/2)).
a(n) = 6*a(n-1) - 6*a(n-2) - 24*a(n-3) + 49*a(n-4) + 6*a(n-5) - 66*a(n-6) + 36*a(n-7) for n > 7.
G.f.: x^3*(1 - 2*x - 4*x^2 + 13*x^3 - 9*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 2*x^2)*(1 - 3*x^2)).

A327611 Number of length n reversible string structures that are not palindromic using exactly four different colors.

Original entry on oeis.org

0, 0, 0, 1, 6, 37, 182, 876, 3920, 17175, 73030, 306296, 1266916, 5198207, 21180642, 85909216, 347179440, 1399443775, 5629876910, 22616222616, 90754709276, 363889980927, 1458171985402, 5840531023856, 23385647663560, 93613189390175, 374664530448390
Offset: 1

Views

Author

Andrew Howroyd, Sep 18 2019

Keywords

Crossrefs

Column k=4 of A309748.

Programs

  • PARI
    concat([0,0,0], Vec((1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)) + O(x^30))) \\ Andrew Howroyd, Sep 18 2019

Formula

a(n) = A056328(n) - A000453(ceiling(n/2), 4).
a(n) = 8*a(n-1) - 10*a(n-2) - 60*a(n-3) + 145*a(n-4) + 100*a(n-5) - 470*a(n-6) + 120*a(n-7) + 456*a(n-8) - 288*a(n-9) for n > 9.
G.f.: x^4*(1 - 2*x - x^2 + 6*x^3 + 5*x^4 - 18*x^5)/((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 2*x^2)*(1 - 3*x^2)).
Previous Showing 11-18 of 18 results.