cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A285320 If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)); number of iterations of A048675 needed before the result is either zero or nonsquarefree number (A013929).

Original entry on oeis.org

0, 1, 2, 3, 0, 1, 4, 1, 0, 0, 2, 1, 0, 1, 1, 5, 0, 1, 0, 1, 0, 3, 2, 1, 0, 0, 2, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 3, 3, 0, 1, 2, 1, 0, 0, 2, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 3, 2, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2017

Keywords

Comments

Conjecture: all terms are well-defined (finite). This implies also the conjecture I have made in A019565.

Examples

			a(38) = 3 because 38 = 2*19 (thus squarefree), A048675(38) = 129 (= 3*43), A048675(129) = 8194 (= 2*17*241) and A048675(8194) = 4503599627370561 (= 3^2 * 37 * 71 * 190483425427), so three steps were needed before nonsquarefree number was reached.
a(74) >= 3 as A048675(74) = 2049 (squarefree), A048675(2049) =  10633823966279326983230456482242756610 (squarefree), A048675(10633823966279326983230456482242756610) = ???
		

Crossrefs

A left inverse of A109162.
Cf. also A285319, A285331, A285332.

Programs

Formula

If n == 0 or A008683(n) == 0, then a(n) = 0, otherwise a(n) = 1+a(A048675(n)).
a(A109162(n)) = n.

A322807 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n) = -1 if n is an odd prime, and f(n) = A285330(n) for all other numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 5, 7, 3, 8, 3, 9, 8, 10, 3, 11, 3, 12, 12, 13, 3, 14, 7, 15, 9, 16, 3, 17, 3, 18, 14, 19, 11, 20, 3, 21, 22, 23, 3, 24, 3, 25, 26, 27, 3, 28, 17, 29, 30, 31, 3, 32, 23, 33, 34, 35, 3, 36, 3, 37, 38, 39, 28, 40, 3, 22, 41, 42, 3, 43, 3, 44, 45, 46, 20, 47, 3, 48, 49, 50, 3, 51, 52, 53, 54, 55, 3, 56, 29, 57, 58, 59, 60, 61, 3, 62, 15
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ From A048675
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A285330(n) = if(issquarefree(n),A048675(n),A285328(n));
    A322807aux(n) = if((n%2)&&isprime(n),-1,A285330(n));
    v322807 = rgs_transform(vector(up_to,n,A322807aux(n)));
    A322807(n) = v322807[n];

A286543 Restricted growth sequence of A286542.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 2, 5, 4, 6, 4, 5, 4, 3, 2, 7, 8, 6, 4, 6, 9, 6, 8, 7, 4, 6, 9, 5, 9, 3, 2, 10, 8, 11, 8, 6, 9, 6, 4, 12, 8, 13, 9, 12, 14, 11, 9, 10, 9, 6, 4, 12, 8, 13, 14, 7, 8, 13, 9, 5, 9, 3, 2, 15, 16, 11, 8, 11, 14, 11, 8, 12, 8, 13, 14, 6, 4, 6, 4, 17, 18, 11, 14, 13, 9, 13, 9, 6, 19, 20, 14, 11, 14, 13, 14, 15, 18, 13, 14, 6, 18, 6, 4, 6, 18, 11, 8
Offset: 0

Views

Author

Antti Karttunen, May 18 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A000120(n) = hammingweight(n);
    A002110(n) = prod(i=1,n,prime(i));
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286542(n) = if(!n,1,if(!(n%2),A002110(A000120(A285332(n/2))),A046523(A285332(n))));
    write_to_bfile(0,rgs_transform(vector(8192,n,A286542(n-1))),"b286543.txt");

A285317 Squarefree numbers n for which A019565(n) < n.

Original entry on oeis.org

33, 65, 66, 129, 130, 131, 257, 258, 259, 514, 515, 517, 518, 521, 1027, 1030, 1031, 1033, 1034, 1041, 1042, 1057, 2049, 2051, 2053, 2054, 2055, 2059, 2065, 2066, 2081, 2082, 2113, 2114, 2177, 2305, 2561, 3073, 4097, 4098, 4099, 4101, 4102, 4103, 4105, 4106, 4109, 4115, 4129, 4130, 4161, 4162, 4226, 4353, 4354, 4609, 4610, 5122
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2017

Keywords

Comments

Any finite cycle in A019565, if such cycles exist at all, must have at least one member that occurs somewhere in this sequence, although certainly not all terms of this sequence could occur in a finite cycle. Specifically, such a number n must occur also in subsequence A285319, and in general, it should satisfy A019565(n) < n and that A048675^{k}(n) is squarefree for all k = 0 .. oo.

Crossrefs

Intersection of A005117 and A285315.

Programs

  • Mathematica
    a019565[n_]:=Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2] ; Select[Range[5200], SquareFreeQ[#] && a019565[#]<# &] (* Indranil Ghosh, Apr 18 2017, after Michael De Vlieger *)
  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    isA285317(n) = (issquarefree(n) & (A019565(n) < n));
    n=0; k=1; while(k <= 10000, n=n+1; if(isA285317(n),write("b285317.txt", k, " ", n);k=k+1));
    
  • Python
    from operator import mul
    from functools import reduce
    from sympy import prime
    from sympy.ntheory.factor_ import core
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1
    print([n for n in range(1, 5201) if core(n) == n and a019565(n) < n]) # Indranil Ghosh, Apr 18 2017, after Chai Wah Wu
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A285317 (MATCHING-POS 1 0 (lambda (n) (and (< (A019565 n) n) (not (zero? (A008683 n)))))))
    

Formula

a(n) = A019565(A285318(n)).

A322806 Lexicographically earliest such sequence a that a(i) = a(j) => A285330(i) = A285330(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 4, 5, 7, 8, 9, 10, 11, 9, 6, 12, 13, 14, 15, 15, 16, 17, 18, 7, 19, 11, 20, 21, 22, 23, 8, 18, 24, 13, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 22, 38, 39, 40, 41, 42, 29, 43, 44, 45, 46, 47, 48, 49, 50, 10, 37, 51, 52, 28, 53, 54, 55, 56, 57, 58, 59, 60, 25, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 38
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2018

Keywords

Comments

Restricted growth sequence transform of A285330.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ From A048675
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A285330(n) = if(issquarefree(n),A048675(n),A285328(n));
    v322806 = rgs_transform(vector(up_to,n,A285330(n)));
    A322806(n) = v322806[n];

A285318 a(n) = A048675(A285317(n)).

Original entry on oeis.org

18, 36, 19, 8194, 37, 2147483648, 18014398509481984, 8195, 2056, 18014398509481985, 67108868, 16400, 2057, 158456325028528675187087900672, 2097184, 67108869, 5986310706507378352962293074805895248510699696029696, 11972621413014756705924586149611790497021399392059392, 16401, 295147905179352825858, 158456325028528675187087900673, 34359738376
Offset: 1

Views

Author

Antti Karttunen, Apr 18 2017

Keywords

Crossrefs

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    isA285317(n) = (issquarefree(n) & (A019565(n) < n));
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
    n=0; k=1; while(k <= 130, n=n+1; if(isA285317(n),write("b285318.txt", k, " ", A048675(n));k=k+1));
    
  • Scheme
    (define (A285318 n) (A048675 (A285317 n)))

Formula

a(n) = A048675(A285317(n)).

A286544 Restricted growth sequence of A285333.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 4, 6, 5, 7, 6, 8, 9, 9, 5, 10, 9, 11, 8, 12, 13, 14, 9, 13, 6, 15, 11, 16, 17, 17, 8, 18, 17, 19, 13, 20, 17, 21, 8, 22, 17, 23, 24, 25, 23, 26, 13, 27, 11, 28, 16, 29, 30, 31, 17, 32, 9, 33, 34, 24, 35, 35, 6, 36, 37, 38, 39, 40, 41, 42, 13, 43, 44, 45, 28, 46, 28, 34, 6, 47, 48, 49, 21, 50, 35, 51, 39, 52, 53, 54, 55, 56, 57, 58, 11, 59
Offset: 0

Views

Author

Antti Karttunen, May 18 2017

Keywords

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); };
    A285333(n) = if(!n,n,if(!(n%2),A285332(n/2),A048675(A285332(n))));
    write_to_bfile(0,rgs_transform(vector(8192,n,A285333(n-1))),"b286544.txt");
Previous Showing 11-17 of 17 results.