A326082
Number of maximal sets of pairwise indivisible divisors of n.
Original entry on oeis.org
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 8, 3, 3, 4, 5, 2, 7, 2, 6, 3, 3, 3, 9, 2, 3, 3, 8, 2, 7, 2, 5, 5, 3, 2, 12, 3, 5, 3, 5, 2, 8, 3, 8, 3, 3, 2, 15, 2, 3, 5, 7, 3, 7, 2, 5, 3, 7, 2, 15, 2, 3, 5, 5, 3, 7, 2, 12, 5, 3, 2, 15, 3
Offset: 1
The maximal sets of pairwise indivisible divisors of n = 1, 2, 4, 8, 12, 24, 30, 32, 36, 48, 60 are:
1 1 1 1 1 1 1 1 1 1 1
2 2 2 12 24 30 2 36 48 60
4 4 2,3 2,3 5,6 4 2,3 2,3 2,15
8 3,4 3,4 2,15 8 2,9 3,4 3,20
4,6 3,8 3,10 16 3,4 3,8 4,30
4,6 2,3,5 32 4,18 4,6 5,12
6,8 6,10,15 9,12 6,8 2,3,5
8,12 12,18 3,16 3,4,5
4,6,9 6,16 4,5,6
8,12 3,4,10
12,16 6,15,20
16,24 10,12,15
12,15,20
12,20,30
4,6,10,15
Cf.
A001055,
A051026,
A067992,
A096827,
A143824,
A285572,
A285573,
A303362,
A305148,
A305149,
A316476,
A325861,
A326023,
A326077.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Rest[Subsets[Divisors[n]]],stableQ[#,Divisible]&]]],{n,100}]
A328678
Number of strict, pairwise indivisible, relatively prime integer partitions of n.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 2, 1, 2, 2, 4, 3, 5, 4, 5, 7, 10, 9, 12, 11, 14, 15, 22, 20, 25, 26, 32, 33, 44, 41, 54, 49, 62, 67, 80, 80, 100, 100, 118, 121, 152, 148, 179, 178, 210, 219, 267, 259, 316, 313, 363, 380, 449, 448, 529, 532, 619, 640, 745, 749, 867, 889
Offset: 1
The a(1) = 1 through a(20) = 11 partitions (A..H = 10..20) (empty columns not shown):
1 32 43 53 54 73 65 75 76 95 87 97 98 B7 A9 B9
52 72 532 74 543 85 B3 B4 B5 A7 D5 B8 D7
83 732 94 743 D2 D3 B6 765 C7 H3
92 A3 752 654 754 C5 873 D6 875
B2 753 853 D4 954 E5 965
952 E3 972 F4 974
B32 F2 B43 G3 A73
764 B52 H2 B54
A43 D32 865 B72
7532 964 D43
B53 D52
7543
The Heinz numbers of these partitions are the squarefree terms of
A328677.
Pairwise indivisible partitions are
A303362.
Strict, relatively prime partitions are
A078374.
A ranking function using binary indices is
A328671.
-
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&&stableQ[#,Divisible]&]],{n,30}]
A330225
Position of first appearance of n in A290103 = LCM of prime indices.
Original entry on oeis.org
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1
The version for product instead of lcm is
A318871
The version for standard compositions is
A333225.
The version for binary indices is
A333492.
Let q(k) be the prime indices of k:
- The product of q(k) is
A003963(k).
- The terms of q(k) are row k of
A112798.
- The LCM of q(k) + 1 is
A328219(k).
Cf.
A000837,
A074761,
A074971,
A076078,
A285572,
A289509,
A290104,
A319333,
A324837,
A328451,
A331579,
A333226.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
q=Table[If[n==1,1,LCM@@primeMS[n]],{n,100}];
Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]
A305254
Number of factorizations f of n into factors greater than 1 such that the graph of f is a forest.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 8, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 11, 2, 5, 1, 4, 2, 5, 1, 14, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2
Offset: 1
The a(72) = 14 factorizations:
(72)
(2*36) (3*24) (4*18) (8*9)
(2*2*18) (2*3*12) (2*4*9) (3*3*8) (3*4*6)
(2*2*2*9) (2*2*3*6) (2*3*3*4)
(2*2*2*3*3)
not counted: (2*6*6) because 6 and 6 share multiple divisors; likewise (6*12) because 6 and 12 share multiple divisors.
Cf.
A001970,
A048143,
A281116,
A285572,
A286518,
A286520,
A303386,
A304714,
A304716,
A305149,
A305193,
A305253.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Table[Length[Select[facs[n],Function[f,And@@(zensity[Select[f,Function[x,Divisible[#,x]]]]==-1&/@zsm[f])]]],{n,200}]
A321678
Number of non-isomorphic weight-n strict antichains of sets with no singletons.
Original entry on oeis.org
1, 0, 1, 1, 3, 3, 11, 13, 39, 67, 174
Offset: 0
Non-isomorphic representatives of the a(2) = 1 through a(6) = 11 antichains:
{{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}} {{1,2,3,4,5,6}}
{{1,2},{3,4}} {{1,2},{3,4,5}} {{1,2},{3,4,5,6}}
{{1,3},{2,3}} {{1,4},{2,3,4}} {{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,5},{2,3,4,5}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
Cf.
A006126,
A049311,
A096827,
A285572,
A293993,
A293994,
A318099,
A319719,
A319721,
A320799,
A321679.
Comments