cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A022602 Expansion of Product_{m>=1} (1+q^m)^(-7).

Original entry on oeis.org

1, -7, 21, -42, 84, -175, 322, -547, 931, -1561, 2527, -3976, 6167, -9485, 14336, -21280, 31304, -45696, 65940, -94122, 133371, -187734, 262143, -363265, 500381, -685503, 933506, -1263794, 1702590, -2283379, 3047597
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=7 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    x='x+O('x^50); Vec(prod(m=1, 50, (1 + x^m)^(-7))) \\ Indranil Ghosh, Apr 05 2017

Formula

a(n) ~ (-1)^n * 7^(1/4) * exp(Pi*sqrt(7*n/6)) / (2^(7/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(7/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-7*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A022604 Expansion of Product_{m>=1} (1+q^m)^(-9).

Original entry on oeis.org

1, -9, 36, -93, 207, -459, 957, -1827, 3357, -6061, 10620, -18045, 30006, -49122, 79128, -125247, 195435, -301599, 460167, -694026, 1036368, -1534305, 2252277, -3278709, 4736973, -6797196, 9689103, -13722487
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=9 of A286352.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^9, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)

Formula

a(n) ~ (-1)^n * 3^(1/4) * exp(Pi*sqrt(3*n/2)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(9/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 05 2017
G.f.: exp(-9*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A341279 Triangle read by rows: T(n,k) = coefficient of x^n in expansion of (-1 + Product_{j>=1} 1 / (1 + (-x)^j))^k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 1, 0, 1, 3, 3, 4, 0, 1, 0, 1, 4, 6, 4, 5, 0, 1, 0, 2, 5, 9, 10, 5, 6, 0, 1, 0, 2, 8, 13, 16, 15, 6, 7, 0, 1, 0, 2, 9, 21, 26, 25, 21, 7, 8, 0, 1, 0, 2, 12, 27, 44, 45, 36, 28, 8, 9, 0, 1, 0, 3, 15, 40, 63, 80, 71, 49, 36, 9, 10, 0, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2021

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,  1;
  0,  0,  1;
  0,  1,  0,  1;
  0,  1,  2,  0,  1;
  0,  1,  2,  3,  0,  1;
  0,  1,  3,  3,  4,  0,  1;
  0,  1,  4,  6,  4,  5,  0,  1;
  0,  2,  5,  9, 10,  5,  6,  0,  1;
  0,  2,  8, 13, 16, 15,  6,  7,  0,  1;
  0,  2,  9, 21, 26, 25, 21,  7,  8,  0,  1;
  0,  2, 12, 27, 44, 45, 36, 28,  8,  9,  0,  1;
  ...
		

Crossrefs

Main diagonal and lower diagonals give A000012, A000004, A001477, A000217, A000290.
Row sums give A307058.
T(2n,n) gives A341265.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    T:= proc(n, k) option remember;
          `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)),
          (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 09 2021
  • Mathematica
    T[n_, k_] := SeriesCoefficient[(-1 + 2/QPochhammer[-1, -x])^k, {x, 0, n}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten

Formula

G.f. of column k: (-1 + Product_{j>=1} (1 + x^(2*j-1)))^k.
Sum_{k=0..n} (-1)^(n-k) * T(n,k) = A000009(n).
Previous Showing 11-13 of 13 results.