A010833 Expansion of Product_{k>=1} (1-x^k)^28.
1, -28, 350, -2520, 11025, -26180, 4158, 184600, -554400, 401100, 1496964, -3920280, 1444625, 6224400, -4972350, -7121296, -8308965, 50796900, -8971200, -121968000, 94011435, 80598288, 20282500, -175228200
Offset: 0
Keywords
Examples
1 - 28*x + 350*x^2 - 2520*x^3 + 11025*x^4 - 26180*x^5 + 4158*x^6 + 184600*x^7 + ...
References
- Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- M. Boylan, Exceptional congruences for the coefficients of certain eta-product newforms, J. Number Theory 98 (2003), no. 2, 377-389.
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Formula
a(0) = 1, a(n) = -(28/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Aug 13 2023