cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A024213 a(n) = 3rd elementary symmetric function of first n+2 positive integers congruent to 1 mod 3.

Original entry on oeis.org

28, 418, 2485, 9605, 28700, 72128, 159978, 322770, 604560, 1066450, 1790503, 2884063, 4484480, 6764240, 9936500, 14261028, 20050548, 27677490, 37581145, 50275225, 66355828, 86509808, 111523550, 142292150, 179829000, 225275778
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A286718.

Programs

  • Magma
    [n*(n+1)*(n+2)*(3*n+5)*(9*n^2+21*n-2)/48: n in [1..30]]; // Vincenzo Librandi, Oct 10 2011

Formula

a(n) = n*(n+1)*(n+2)*(3n+5)*(9n^2+21*n-2)/48.
G.f. -x*(28+222*x+147*x^2+8*x^3) / (x-1)^7 . - R. J. Mathar, Oct 08 2011
From Wolfdieter Lang, Jul 30 2017: (Start)
E.g.f.: x*exp(x)*(1344 + 8688*x + 10520*x^2 + 4122*x^3 + 594*x^4 + 27*x^5)/48.
a(n) = A286718(n+2, n-1), n >= 1. (End)

A290596 Triangle read by rows. A generalization of unsigned Lah numbers, called L[3,1].

Original entry on oeis.org

1, 2, 1, 10, 10, 1, 80, 120, 24, 1, 880, 1760, 528, 44, 1, 12320, 30800, 12320, 1540, 70, 1, 209440, 628320, 314160, 52360, 3570, 102, 1, 4188800, 14660800, 8796480, 1832600, 166600, 7140, 140, 1, 96342400, 385369600, 269758720, 67439680, 7663600, 437920, 12880, 184, 1, 2504902400, 11272060800, 9017648640, 2630147520, 358656480, 25618320, 1004640, 21528, 234, 1, 72642169600, 363210848000, 326889763200, 108963254400, 17335063200, 1485862560, 72836400, 2081040, 33930, 290, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2017

Keywords

Comments

For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[3,1], the Sheffer triangle ((1 - 3*t)^(-2/3), t/(1 - 3*t)). It is defined as transition matrix
risefac[3,1](x, n) = Sum_{m=0..n} L[3,1](n, m)*fallfac[3,1](x, m), where risefac[3,1](x, n):= Product_{0..n-1} (x + (1 + 3*j)) for n >= 1 and risefac[3,1](x, 0) := 1, and fallfac[3,1](x, n):= Product_{0..n-1} (x - (1 + 3*j)) for n >= 1 and fallfac[3,1](x, 0) := 1.
In matrix notation: L[3,1] = S1phat[3,1]*S2hat[3,1] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A286718 and A111577 (but here with offsets 0), respectively.
The a- and z-sequences for this Sheffer matrix has e.g.f.s Ea(t) = 1 + 3*t and (Ez(t) = (1 + 3*t)*(1 - (1 + 3*t)^(-2/3))/t, respectively. That is, a = {1, 3, repeat(0)} and z(n) = A290597(n)/A038500(n+1). For the proof see the second W. Lang link. See also a W. Lang link under A006232 for Sheffer a- and z-sequences with references (in the Riordan case).
The inverse matrix T^(-1) = L^(-1)[3,1] is Sheffer ((1 + 3*t)^(-2/3), t/(1 + 3*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[3,1](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[3,1](x, m), n >= 0.

Examples

			The triangle T(n, m) begins:
n\m         0         1         2        3       4      5     6   7 8  ...
0:          1
1:          2         1
2:         10        10         1
3:         80       120        24        1
4:        880      1760       528       44       1
5:      12320     30800     12320     1540      70      1
6:     209440    628320    314160    52360    3570    102     1
7:    4188800  14660800   8796480  1832600  166600   7140   140   1
8:   96342400 385369600 269758720 67439680 7663600 437920 12880 184 1
...
n = 9: 2504902400 11272060800 9017648640 2630147520 358656480 25618320 1004640 21528 234 1,
n = 10: 72642169600 363210848000 326889763200 108963254400 17335063200 1485862560 72836400 2081040 33930 290 1.
...
Recurrence from a-sequence:  T(4, 2) = 2*T(3, 1) + 3*4*T(3, 2) = 2*120 + 12*24 = 528.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2) + z(3)*T(3, 3)) = 4*(2*80 + 1*120 - (10/3)*24 + 20*1) = 880.
Four term recurrence: T(4, 2) = T(3, 1) + 2*10*T(3, 2) - 3*3*8*T(2, 2) =  120 + 20*24 - 72*1 = 528.
Meixner type identity for n = 2: (D_x - 3*(D_x)^2)*(10 + 10*x + x^2 ) = (10 + 2*x) - 3*2 = 2*(2 + x).
Sheffer recurrence for R(3, x): [(2 + x) + 6*(1 + x)*D_x + 9*x*(D_x)^2] (10 + 10*x + x^2) = (2 + x)*(10 + 10*x + x^2) + 6*(1 + x)*(10 +2*x) + 9*2*x = 80 + 120*x + 24*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*8/2)*(1*24/3! + 3*1/2!) = 528.
		

References

  • Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.

Crossrefs

Cf. A008544 (column m=0), A038500, A111577, A271703 L[1,0], A286718, A286724 L[2,1], A290597, A290598 L[3,2].

Formula

T(n, m) = L[3,1](n,m) = Sum_{k=m..n} A286718(n, k)*A111577(k+1, m+1), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 3*t)^(-2/3)*exp(x*t/(1 - 3*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 3*t)^(-2/3)*(t/(1 - 3*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 3*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), from the a-sequence {1, 3 repeat(0)} and the z-sequence given above.
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(3*n - 2)*T(n-1, m) - 3*(n-1)*(3*n - 4)*T(n-2, m), n >= m >= 0, with T(0, 0) = 1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 3*D_x)) * R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-3)^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(2 + x)*1 + 6*(1 + x)*D_x + 3^2*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(2 + 3*m)*Sum_{p=0..n-1-m} 3^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.

A290319 Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 4*x)^(-1/4), (-1/4)*log(1 - 4*x)). A generalized Stirling1 triangle.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 45, 59, 15, 1, 585, 812, 254, 28, 1, 9945, 14389, 5130, 730, 45, 1, 208845, 312114, 122119, 20460, 1675, 66, 1, 5221125, 8011695, 3365089, 633619, 62335, 3325, 91, 1, 151412625, 237560280, 105599276, 21740040, 2441334, 158760, 5964, 120, 1, 4996616625, 7990901865, 3722336388, 823020596, 102304062, 7680414, 355572, 9924, 153, 1, 184874815125, 300659985630, 145717348221, 34174098440, 4608270890, 386479380, 20836578, 722760, 15585, 190, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 08 2017

Keywords

Comments

This generalization of the unsigned Stirling1 triangle A132393 is called here |S1hat[4,1]|.
The signed matrix S1hat[4,1] with elements (-1)^(n-k)*|S1hat[4,1]|(n, k) is the inverse of the generalized Stirling2 Sheffer matrix S2hat[4,1] with elements S2[4,1](n, k)/d^k, where S2[4,1] is Sheffer (exp(x), exp(4*x) - 1), given in A285061. See also the P. Bala link below for the scaled and signed version s_{(4,0,1)}.
For the general |S1hat[d,a]| case see a comment in A286718.

Examples

			The triangle T(n, k) begins:
  n\k         0         1         2        3       4      5    6   7  8 ...
  0:          1
  1:          1         1
  2:          5         6         1
  3:         45        59        15        1
  4:        585       812       254       28       1
  5:       9945     14389      5130      730      45      1
  6:     208845    312114    122119    20460    1675     66    1
  7:    5221125   8011695   3365089   633619   62335   3325   91   1
  8:  151412625 237560280 105599276 21740040 2441334 158760 5964 120  1
  ...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: T(4, 2) = T(3, 1) + (16 - 3)*T(3, 2) = 59 + 13*15 = 254.
Boas-Buck recurrence for column k=2 and n=4:
T(4, 2) = (4!/2)*(4*(1 + 8*(5/12))*T(2, 2)/2! + 1*(1 + 8*(1/2))*T(3,2)/3!) = (4!/2)*(2*13/3 + 5*15/3!) = 254. (End)
		

Crossrefs

S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is A048993, A154537, A282629, A225466, A285061 and A225467, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,1], [3,2] and [4,3] is A132393, A028338, A286718, A225470 and A225471, respectively.
Columns k=0..3 give A007696, A024382(n-1), A383700, A383701.
Row sums: A001813. Alternating row sums: A000007.

Programs

  • Mathematica
    FoldList[Join[Table[If[i == 1, 0, #[[i-1]]] + (4*#2 - 3)*#[[i]], {i, Length[#]}], {1}] &, {1}, Range[10]] (* Paolo Xausa, Aug 18 2025 *)

Formula

Recurrence: T(n, k) = T(n-1, k-1) + (4*n - 3)*T(n-1, k), for n >= 1, k = 0..n, and T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k.
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (i.e., e.g.f. of the triangle): (1 - 4*z)^{-(x + 1)/4}.
E.g.f. of column k is (1 - 4*x)^(-1/4)*((-1/4)*log(1 - 4*x))^k/k!.
Recurrence for row polynomials is R(n, x) = (x+1)*R(n-1, x+4), with R(0, x) = 1. Row polynomial R(n, x) = risefac(4,1;x,n) with the rising factorial risefac(d,a;x,n) :=Product_{j=0..n-1} (x + (a + j*d)). (For the signed case see the Bala link, eq. (16)).
T(n, k) = sigma^{(n)}{n-k}(a_0, a_1, ..., a{n-1}) with the elementary symmetric functions with indeterminates a_j = 1 + 4*j.
T(n, k) = Sum_{j=0..n-k} binomial(n-j, k)*|S1|(n, n-j)*4^j, with the unsigned Stirling1 triangle |S1| = A132393.
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 4^(n-1-p)*(1 + 4*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning with {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017

A382984 Coefficient of x^3 in expansion of (x+1) * (x+4) * ... * (x+3*n-2).

Original entry on oeis.org

0, 0, 0, 1, 22, 445, 9605, 227969, 5974388, 172323696, 5441287980, 187011672276, 6957458412520, 278765196526024, 11973706678705408, 549052544309039744, 26777325537157361024, 1384271732837081576576, 75622395021091990225152, 4353640204459556218940160
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2025

Keywords

Crossrefs

Column k=3 of A286718.
Cf. A028340.

Programs

  • PARI
    a(n) = polcoef(prod(k=0, n-1, x+3*k+1), 3);

Formula

a(n) = Sum_{k=3..n} 3^(n-k) * binomial(k,3) * |Stirling1(n,k)|.
E.g.f.: f(x) * log(f(x))^3 / 6, where f(x) = 1/(1 - 3*x)^(1/3).

A382985 Coefficient of x^4 in expansion of (x+1) * (x+4) * ... * (x+3*n-2).

Original entry on oeis.org

0, 0, 0, 0, 1, 35, 1005, 28700, 859369, 27458613, 941164860, 34617398640, 1364003226036, 57425577775852, 2575788307560104, 122732603903789880, 6194752323883374224, 330320189407442698000, 18560921582024101872576, 1096473082032417593216832
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2025

Keywords

Crossrefs

Column k=4 of A286718.
Cf. A028341.

Programs

  • PARI
    a(n) = polcoef(prod(k=0, n-1, x+3*k+1), 4);

Formula

a(n) = Sum_{k=4..n} 3^(n-k) * binomial(k,4) * |Stirling1(n,k)|.
E.g.f.: f(x) * log(f(x))^4 / 24, where f(x) = 1/(1 - 3*x)^(1/3).
Previous Showing 11-15 of 15 results.