cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A286718 Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 3*x)^(-1/3), (-1/3)*log(1 - 3*x)). A generalized Stirling1 triangle.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 28, 39, 12, 1, 280, 418, 159, 22, 1, 3640, 5714, 2485, 445, 35, 1, 58240, 95064, 45474, 9605, 1005, 51, 1, 1106560, 1864456, 959070, 227969, 28700, 1974, 70, 1, 24344320, 42124592, 22963996, 5974388, 859369, 72128, 3514, 92, 1, 608608000, 1077459120, 616224492, 172323696, 27458613, 2662569, 159978, 5814, 117, 1, 17041024000, 30777463360, 18331744896, 5441287980, 941164860, 102010545, 7141953, 322770, 9090, 145, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 18 2017

Keywords

Comments

This is a generalization of the unsigned Stirling1 triangle A132393.
In general the lower triangular Sheffer matrix ((1 - d*x)^(-a/d), (-1/d)*log(1 - d*x)) is called here |S1hat[d,a]|. The signed matrix S1hat[d,a] with elements (-1)^(n-k)*|S1hat[d,a]|(n, k) is the inverse of the generalized Stirling2 Sheffer matrix S2hat[d,a] with elements S2[d,a](n, k)/d^k, where S2[d,a] is Sheffer (exp(a*x), exp(d*x) - 1).
In the Bala link the signed S1hat[d,a] (with row scaled elements S1[d,a](n,k)/d^n where S1[d,a] is the inverse matrix of S2[d,a]) is denoted by s_{(d,0,a)}, and there the notion exponential Riordan array is used for Sheffer array.
In the Luschny link the elements of |S1hat[m,m-1]| are called Stirling-Frobenius cycle numbers SF-C with parameter m.
From Wolfdieter Lang, Aug 09 2017: (Start)
The general row polynomials R(d,a;n,x) = Sum_{k=0..n} T(d,a;n,k)*x^k of the Sheffer triangle |S1hat[d,a]| satisfy, as special polynomials of the Boas-Buck class (see the reference), the identity (we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function)
(E_x - n*1)*R(d,a;n,x) = -n!*Sum_{k=0..n-1} d^k*(a*1 + d*beta(k)*E_x)*R(d,a;n-1-k,x)/(n-1-k)!, for n >= 0, with E_x = x*d/dx (Euler operator), and beta(k) = A002208(k+1)/A002209(k+1).
This entails a recurrence for the sequence of column k, for n > k >= 0: T(d,a;n,k) = (n!/(n - k))*Sum_{p=k..n-1} d^(n-1-p)*(a + d*k*beta(n-1-p))*T(d,a;p,k)/p!, with input T(d,a;k,k) = 1. For the present [d,a] = [3,1] case see the formula and example sections below. (End)
The inverse of the Sheffer triangular matrix S2[3,1] = A282629 is the Sheffer matrix S1[3,1] = (1/(1 + x)^(1/3), log(1 + x)/3) with rational elements S1[3,1](n, k) = (-1)^(n-m)*T(n, k)/3^n. - Wolfdieter Lang, Nov 15 2018

Examples

			The triangle T(n, k) begins:
n\k        0        1        2       3      4     5    6  7 8 ...
O:         1
1:         1        1
2:         4        5        1
3:        28       39       12       1
4:       280      418      159      22      1
5:      3640     5714     2485     445     35     1
6:     58240    95064    45474    9605   1005    51    1
7:   1106560  1864456   959070  227969  28700  1974   70  1
8:  24344320 42124592 22963996 5974388 859369 72128 3514 92 1
...
From _Wolfdieter Lang_, Aug 09 2017: (Start)
Recurrence: T(3, 1) = T(2, 0) + (3*3-2)*T(2, 1) = 4 + 7*5 = 39.
Boas-Buck recurrence for column k = 2 and n = 5:
T(5, 2) = (5!/3)*(3^2*(1 + 6*(3/8))*T(2,2)/2! + 3*(1 + 6*(5/12)*T(3, 2)/3! + (1 + 6*(1/2))* T(4, 2)/4!)) = (5!/3)*(9*(1 + 9/4)/2 + 3*(1 + 15/6)*12/6 + (1 + 3)*159/24) = 2485.
The beta sequence begins: {1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, ...}.
(End)
		

References

  • Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
  • Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

Crossrefs

S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is A048993, A154537, A282629, A225466, A285061 and A225467, respectively.
S2hat[d,a] for these [d,a] values is A048993, A039755, A111577 (offset 0), A225468, A111578 (offset 0) and A225469, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,2], [4,1] and [4,3] is A132393, A028338, A225470, A290317 and A225471, respectively.
Column sequences for k = 0..4: A007559, A024216(n-1), A286721(n-2), A382984, A382985.
Diagonal sequences: A000012, A000326(n+1), A024212(n+1), A024213(n+1).
Row sums: A008544. Alternating row sums: A000007.
Beta sequence: A002208(n+1)/A002209(n+1).

Programs

  • Mathematica
    T[n_ /; n >= 1, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (3*n-2)* T[n-1, k]; T[, -1] = 0; T[0, 0] = 1; T[n, k_] /; nJean-François Alcover, Jun 20 2018 *)

Formula

Recurrence: T(n, k) = T(n-1, k-1) + (3*n-2)*T(n-1, k), for n >= 1, k = 0..n, and T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k.
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (i.e., e.g.f. of the triangle) is (1 - 3*z)^{-(x+1)/3}.
E.g.f. of column k is (1 - 3*x)^(-1/3)*((-1/3)*log(1 - 3*x))^k/k!.
Recurrence for row polynomials is R(n, x) = (x+1)*R(n-1, x+3), with R(0, x) = 1.
Row polynomial R(n, x) = risefac(3,1;x,n) with the rising factorial
risefac(d,a;x,n) := Product_{j=0..n-1} (x + (a + j*d)). (For the signed case see the Bala link, eq. (16)).
T(n, k) = sigma^{(n)}{n-k}(a_0,a_1,...,a{n-1}) with the elementary symmetric functions with indeterminates a_j = 1 + 3*j.
T(n, k) = Sum_{j=0..n-k} binomial(n-j, k)*|S1|(n, n-j)*3^j, with the unsigned Stirling1 triangle |S1| = A132393.
Boas-Buck column recurrence (see a comment above): T(n, k) =
(n!/(n - k))*Sum_{p=k..n-1} 3^(n-1-p)*(1 + 3*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, with beta(k) = A002208(k+1)/A002209(k+1). See an example below. - Wolfdieter Lang, Aug 09 2017

A024216 a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 3.

Original entry on oeis.org

1, 5, 39, 418, 5714, 95064, 1864456, 42124592, 1077459120, 30777463360, 971142388160, 33547112941440, 1259204418129280, 51032742579123200, 2220990565060377600, 103308619261574809600, 5114702794181847910400
Offset: 0

Views

Author

Keywords

Comments

Comment by R. J. Mathar, Oct 01 2016: (Start)
The k-th elementary symmetric functions of the integers 1+j*3, j=0..n-1, form a triangle T(n,k), 0 <= k <= n, n >= 0:
1
1 1
1 5 4
1 12 39 28
1 22 159 418 280
1 35 445 2485 5714 3640
1 51 1005 9605 45474 95064 58240
1 70 1974 28700 227969 959070 1864456 1106560
1 92 3514 72128 859369 5974388 22963996 42124592 24344320
This here is the first subdiagonal. The diagonal seems to be A007559. The first columns are A000012, A000326, A024212, A024213, A024214. (End)

Examples

			From _Gheorghe Coserea_, Dec 24 2015: (Start)
For n = 1 we have a(1) = 1*4*(1/1 + 1/4) = 5.
For n = 2 we have a(2) = 1*4*7*(1/1 + 1/4 + 1/7) = 39.
For n = 3 we have a(3) = 1*4*7*10*(1/1 + 1/4 + 1/7 + 1/10) = 418.
(End)
		

Crossrefs

Cf. A024395, A024382, A286718 (first column).

Programs

  • Magma
    I:=[5,39]; [1] cat [n le 2 select I[n] else (6*n-1) * Self(n-1) - (3*n-2)^2 * Self(n-2) : n in [1..30]]; // Vincenzo Librandi, Aug 30 2015
  • Maple
    f:= gfun:-rectoproc({-(3*n+1)^2*a(n-1)+(6*n+5)*a(n)-a(n+1), a(0) = 1, a(1) = 5, a(2) = 39}, a(n), remember):
    map(f, [$0..30]); # Robert Israel, Aug 30 2015
  • Mathematica
    Rest[CoefficientList[Series[-(1/3)*Log[1-3*x]/(1-3*x)^(1/3), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 07 2013 *)
  • PARI
    n = 33; a = vector(n); a[1] = 5; a[2] = 39;
    for (k = 2, n-1, a[k+1] = (6*k+5) * a[k] - (3*k+1)^2 * a[k-1]);
    print(concat(1,a));  \\ Gheorghe Coserea, Aug 29 2015
    

Formula

E.g.f. (for offset 1): -(1/3)*log(1-3*x)/(1-3*x)^(1/3). - Vladeta Jovovic, Sep 26 2003
For n >= 1, a(n-1) = 3^(n-1)*n!*Sum_{k=0..n-1} binomial(k-2/3, k)/(n-k). - Milan Janjic, Dec 14 2008, corrected by Peter Bala, Oct 08 2013
a(n) ~ (n+1)! * GAMMA(2/3) * 3^(n+3/2) * (log(n) + gamma + Pi*sqrt(3)/6 + 3*log(3)/2) / (6*Pi*n^(2/3)), where "GAMMA" is the Gamma function and "gamma" is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 07 2013
a(n+1) = (6*n+5) * a(n) - (3*n+1)^2 * a(n-1). - Gheorghe Coserea, Aug 29 2015
E.g.f.: (3 - log(1-3*x))/(3*(1-3*x)^(4/3)). - Robert Israel, Aug 30 2015
a(n) = A286718(n+1, 1), n >= 0.
Boas-Buck type recurrence: a(0) = 1 and for n >= 1: a(n) = ((n+1)!/n) * Sum_{p=1..n} 3^(n-p)*(1 + 3*beta(n-p))*a(p-1)/p!, with beta(k) = A002208(k+1) / A002209(k+1). Proof from a(n) = A286718(n+1, 1). - Wolfdieter Lang, Aug 09 2017

Extensions

More terms from Vladeta Jovovic, Sep 26 2003

A024224 a(n) = floor((4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n))), where S(n) = {first n+3 positive integers congruent to 1 mod 3}.

Original entry on oeis.org

0, 2, 4, 7, 11, 16, 22, 28, 35, 43, 51, 60, 70, 81, 93, 105, 118, 132, 146, 161, 177, 194, 212, 230, 249, 269, 289, 310, 332, 355, 379, 403, 428, 454, 480, 507, 535, 564, 594, 624, 655, 687, 719, 752, 786, 821, 857, 893, 930, 968, 1006, 1045, 1085, 1126, 1168, 1210, 1253, 1297, 1341, 1386, 1432
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(3*n^2+5*n-6) div 8: n in [1..70]]; // Vincenzo Librandi, Dec 11 2015
  • Maple
    seq(floor((3*n^2 + 5*n - 6)/8), n=1..100); # Robert Israel, Dec 10 2015
  • Mathematica
    S[n_] := 3 Range[0, n + 2] + 1; Table[Floor[SymmetricPolynomial[4, S@ n]/SymmetricPolynomial[3, S@ n]], {n, 61}] (* Michael De Vlieger, Dec 10 2015 *)
  • PARI
    concat(0, Vec(x^2*(2-2*x+3*x^2-2*x^3+3*x^4-2*x^5+2*x^6-x^7)/((1-x)^3*(1+x^2)*(1+x^4)) + O(x^100))) \\ Colin Barker, Dec 10 2015
    
  • PARI
    a(n) = (3*n^2 + 5*n - 6)\8; \\ Altug Alkan, Dec 10 2015
    

Formula

G.f.: x^2*(2-2*x+3*x^2-2*x^3+3*x^4-2*x^5+2*x^6-x^7) / ((1-x)^3*(1+x^2)*(1+x^4)). - Colin Barker, Dec 10 2015
From Robert Israel, Dec 10 2015: (Start)
a(n) = floor(A024214(n+1)/A024213(n+1)).
a(n) = floor((3 n^2 + 5 n - 6)/8).
a(8*k+j) = 24*k^2 + (5 + 6*j) k + b(j), where b(j) = -1,0,2,4,7,11,16,22 for j = 0..7. (End)

Extensions

More terms from Michael De Vlieger, Dec 10 2015

A024220 a(n) = [ (3rd elementary symmetric function of S(n))/(first elementary symmetric function of S(n)) ], where S(n) = {first n+2 positive integers congruent to 1 mod 3}.

Original entry on oeis.org

2, 19, 71, 188, 410, 784, 1367, 2226, 3435, 5078, 7249, 10049, 13589, 17990, 23380, 29897, 37689, 46911, 57728, 70315, 84854, 101537, 120566, 142150, 166508, 193869, 224469, 258554, 296380, 338210, 384317, 434984, 490501, 551168, 617295, 689199
Offset: 1

Views

Author

Keywords

Formula

Conjecture: a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7). G.f.: x*(-2-11*x-7*x^2-8*x^3+x^4) / ( (1+x+x^2)*(x-1)^5 ). - R. J. Mathar, Oct 08 2011
a(n) = floor(A024213(n) / A000326(n+2)). - Sean A. Irvine, Jun 25 2019

A290595 Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A286718 (|S1hat[3,1]| generalized Stirling 1), for n >= 0.

Original entry on oeis.org

1, 1, 2, 4, 19, 4, 28, 222, 147, 8, 280, 3194, 4128, 887, 16, 3640, 55024, 113566, 52538, 4835, 32, 58240, 1107336, 3268788, 2562676, 555684, 25167, 64, 1106560, 25526192, 100544412, 117517960, 45415640, 5301150, 128203, 128, 24344320, 663605680, 3325767376, 5352311764, 3189383200, 695714590, 47537320, 646519, 256, 608608000, 19213911360, 118361719296, 248493947496, 208996478388, 72479948400, 9696965250, 410038434, 3245139, 512
Offset: 0

Views

Author

Wolfdieter Lang, Aug 08 2017

Keywords

Comments

The ordinary generating function (o.g.f.) of the (n+1)-th diagonal sequence of the Sheffer triangle A286718 = ((1 - 3*x)^(-1/3), -log(1 - 3*x)/3), called |S1hat[3,1]|, is GD(3,1;n,x) = P(n, x)/(1 - x)^(2*n+1), with the row polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, n >= 0.
For the two parameter Sheffer case |S1hat[d,a]| = ((1 - d*x)^{-a/d}, -log(1 - d*x)/d) (with gcd(d,a) = 1, d >=0, a >= 0, and for d = 1 one takes a = 0) the e.g.f. ED(t, x) of the o.g.f.s {GD(d,a;n,x)}_{n>=0} of the diagonal sequences with elements D(d,a;n,m) = |S1hat[d,a]|(n+m, m) (n=0 for the main diagonal) is of interest. It can be computed via Lagrange's theorem. For the special Sheffer case (1, f(x)) this has been done by P. Bala (see the link). This method can be generalized for Sheffer (g(x), f(x)), as shown in the W. Lang link.

Examples

			The triangle T(n, k) begins:
n\k        0        1         2         3        4       5      6   7 ...
0:         1
1:         1        2
2:         4       19         4
3:        28      222       147         8
4:       280     3194      4128       887       16
5:      3640    55024    113566     52538     4835      32
6:     58240  1107336   3268788   2562676   555684   25167      6
7:   1106560 25526192 100544412 117517960 45415640 5301150 128203 128
...
n = 8: 24344320 663605680 3325767376 5352311764 3189383200 695714590 47537320 646519 256,
n = 9: 608608000 19213911360 118361719296 248493947496 208996478388 72479948400 9696965250 410038434 3245139 512.
n = 3: The o.g.f. of the 4th diagonal sequence of A286718, [28, 418, 2485, ...] = A024213(n+1), n >= 0, is P(3, x) = (28 + 222*x + 147*x^2 + 8*x^3)/(1 - 3*x)^7.
		

Crossrefs

Cf. A024213, A286718, A288875 ([2,1] case).

Formula

T(n, k) = [x^k] P(n, x) with the numerator polynomials of the o.g.f. GD(n, x) = P(n, x)/(1-x)^(2*n+1) of the (n+1)-th diagonal sequence of the triangle A286718. See a comment above.
Showing 1-5 of 5 results.