A291001
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 8*S^2.
Original entry on oeis.org
0, 8, 16, 88, 288, 1192, 4400, 17144, 65088, 250184, 955984, 3663256, 14018400, 53679592, 205487984, 786733112, 3011882112, 11530896008, 44144966800, 169006205656, 647027178912, 2477097797416, 9483385847216, 36306456276344, 138996613483200, 532138420900808
Offset: 0
-
[n le 2 select 8*(n-1) else 2*Self(n-1) +7*Self(n-2): n in [1..41]]; // G. C. Greubel, Apr 25 2023
-
z = 60; s = x/(1 - x); p = 1 - s^8;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291001 *)
LinearRecurrence[{2,7}, {0,8}, 41] (* G. C. Greubel, Apr 25 2023 *)
-
A291001=BinaryRecurrenceSequence(2,7,0,8)
[A291001(n) for n in range(41)] # G. C. Greubel, Apr 25 2023
A291002
p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S)*(1 - 2*S)*(1 - 3*S).
Original entry on oeis.org
6, 31, 146, 652, 2816, 11896, 49496, 203752, 832376, 3381736, 13683896, 55206952, 222242936, 893219176, 3585623096, 14380739752, 57637717496, 230895178216, 924613703096, 3701553914152, 14815513224056, 59289946122856, 237243465219896, 949224905162152
Offset: 0
-
[(2^n-16*3^n+27*4^n)/2: n in [0..40]]; // G. C. Greubel, Apr 27 2023
-
z = 60; s = x/(1-x); p = (1-s)*(1-2*s)*(1-3*s);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291002 *)
LinearRecurrence[{9,-26,24}, {6,31,146}, 41] (* G. C. Greubel, Apr 27 2023 *)
-
[(2^n-16*3^n+27*4^n)/2 for n in range(41)] # G. C. Greubel, Apr 27 2023
A291003
p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S)(1 - 2*S)(1 - 3*S)(1 - 4*S).
Original entry on oeis.org
10, 75, 490, 2956, 16944, 93800, 506600, 2687256, 14064904, 72873880, 374671560, 1914880856, 9741440264, 49378177560, 249583291720, 1258711575256, 6336814854024, 31857331730840, 159980377179080, 802678826106456, 4024508089842184, 20167014882109720
Offset: 0
-
[(-2^n +48*3^n -243*4^n +256*5^n)/6: n in [0..40]]; // G. C. Greubel, May 23 2023
-
z = 60; s = x/(1-x); p = (1 - s)(1 - 2 s)(1 - 3 s)(1 - 4 s);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291003 *)
LinearRecurrence[{14,-71,154,-120}, {10,75,490,2956}, 41] (* G. C. Greubel, May 23 2023 *)
-
[(-2^n +48*3^n -243*4^n +256*5^n)//6 for n in range(41)] # G. C. Greubel, May 23 2023
A291004
p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - 3*S)^2.
Original entry on oeis.org
6, 33, 168, 816, 3840, 17664, 79872, 356352, 1572864, 6881280, 29884416, 128974848, 553648128, 2365587456, 10066329600, 42681237504, 180388626432, 760209211392, 3195455668224, 13400297963520, 56075093016576, 234195976716288, 976366325465088, 4063794976260096
Offset: 0
-
[3*(4^(n-1)*(3*n+8)): n in [0..30]]; // Vincenzo Librandi, Aug 27 2017
-
z = 60; s = x/(1-x); p = (1 - 3 s)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291004 *)
LinearRecurrence[{8, -16}, {6, 33}, 25] (* Vincenzo Librandi, Aug 27 2017 *)
-
[3*4^n*(3*n+8)//4 for n in range(41)] # G. C. Greubel, Jun 01 2023
A291005
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 2 S - 2 S^3.
Original entry on oeis.org
2, 6, 20, 68, 230, 774, 2600, 8732, 29330, 98526, 330980, 1111868, 3735110, 12547374, 42150440, 141596132, 475664450, 1597901526, 5367837140, 18032197268, 60575633990, 203491974774, 683591422280, 2296391457932, 7714277207570, 25914602943726, 87055031555300
Offset: 0
-
I:=[2,6,20]; [n le 3 select I[n] else 5*Self(n-1)-7*Self(n-2)+5*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 27 2017
-
z = 60; s = 1 - 2 s - 2 s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291005 *)
u / 2 (* A291337 *)
LinearRecurrence[{5, -7, 5}, {2, 6, 20}, 30] (* Vincenzo Librandi, Aug 27 2017 *)
-
def A291005_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 2*(1-2*x+2*x^2)/(1-5*x+7*x^2-5*x^3) ).list()
A291005_list(30) # G. C. Greubel, Jun 01 2023
A291006
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3 - S^4.
Original entry on oeis.org
1, 3, 9, 27, 80, 235, 688, 2013, 5891, 17244, 50482, 147791, 432672, 1266680, 3708288, 10856241, 31782309, 93044665, 272394011, 797450348, 2334585333, 6834643282, 20008841823, 58577124509, 171488162320, 502042223184, 1469759722591, 4302812676894
Offset: 0
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x+2*x^2)/(1-5*x+8*x^2-6*x^3+x^4) )); // G. C. Greubel, Jun 01 2023
-
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291006 *)
LinearRecurrence[{5,-8,6,-1}, {1,3,9,27}, 41] (* G. C. Greubel, Jun 01 2023 *)
-
def A291006_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-2*x+2*x^2)/(1-5*x+8*x^2-6*x^3+x^4) ).list()
A291006_list(40) # G. C. Greubel, Jun 01 2023
A291007
p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3 - S^4 - S^5.
Original entry on oeis.org
1, 3, 9, 27, 81, 242, 720, 2137, 6337, 18789, 55715, 165232, 490058, 1453493, 4311025, 12786359, 37923789, 112480082, 333610072, 989469949, 2934716101, 8704215281, 25816251319, 76569665176, 227101665034, 673571786617, 1997779058053, 5925309279179
Offset: 0
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1 -3*x +4*x^2 -2*x^3 +x^4)/(1 -6*x +13*x^2 -14*x^3 +7*x^4 -2*x^5) )); // G. C. Greubel, Jun 01 2023
-
z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3 - s^4 - s^5;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291007 *)
LinearRecurrence[{6,-13,14,-7,2},{1,3,9,27,81},30] (* Harvey P. Dale, Apr 07 2019 *)
-
Vec((1 -3*x +4*x^2 -2*x^3 +x^4)/(1 -6*x +13*x^2 -14*x^3 +7*x^4 - 2*x^5) + O(x^30)) \\ Colin Barker, Aug 23 2017
-
def A291007_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1 -3*x +4*x^2 -2*x^3 +x^4)/(1 -6*x +13*x^2 -14*x^3 +7*x^4 -2*x^5) ).list()
A291007_list(40) # G. C. Greubel, Jun 01 2023
A291009
p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S)*(1 - 3*S).
Original entry on oeis.org
4, 17, 70, 284, 1144, 4592, 18400, 73664, 294784, 1179392, 4718080, 18873344, 75495424, 301985792, 1207951360, 4831821824, 19327320064, 77309345792, 309237514240, 1236950319104, 4947801800704, 19791208251392, 79164835102720, 316659344605184, 1266637386809344
Offset: 0
-
[2^(n-1)*(9*2^n -1): n in [0..40]]; // G. C. Greubel, Jun 04 2023
-
z = 60; s = x/(1-x); p = (1-s)(1-3s);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291009 *)
LinearRecurrence[{6,-8}, {4,17}, 40] (* G. C. Greubel, Jun 04 2023 *)
-
Vec((4-7*x)/((1-2*x)*(1-4*x)) + O(x^30)) \\ Colin Barker, Aug 23 2017
-
A291009=BinaryRecurrenceSequence(6,-8,4,17)
[A291009(n) for n in range(41)] # G. C. Greubel, Jun 04 2023
A291010
p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - 2*S)*(1 - 3*S).
Original entry on oeis.org
5, 24, 108, 468, 1980, 8244, 33948, 138708, 563580, 2280564, 9200988, 37040148, 148869180, 597602484, 2396787228, 9606280788, 38482518780, 154102262004, 616925608668, 2469252116628, 9881657512380, 39540577187124, 158204150161308, 632942124883668
Offset: 0
-
[36*(4^(n-1)-3^(n-2)): n in [0..40]]; // G. C. Greubel, Jun 04 2023
-
z = 60; s = x/(1-x); p = (1-2s)(1-3s);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* this sequence *)
LinearRecurrence[{7,-12}, {5,24}, 40] (* G. C. Greubel, Jun 04 2023 *)
-
Vec((5-11*x)/((1-3*x)*(1-4*x)) + O(x^30)) \\ Colin Barker, Aug 23 2017
-
A291010=BinaryRecurrenceSequence(7,-12,5,24)
[A291010(n) for n in range(41)] # G. C. Greubel, Jun 04 2023
A291011
p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S)^2 * (1 - 2*S).
Original entry on oeis.org
4, 15, 52, 172, 552, 1736, 5384, 16536, 50440, 153112, 463176, 1397720, 4210568, 12668568, 38083528, 114414424, 343587336, 1031482904, 3095956040, 9291013848, 27879595144, 83652416920, 250985562312, 753015407192, 2259167856392, 6777755227416, 20333785775944
Offset: 0
-
[8*3^n - 2^(n-1)*(8+n): n in [0..40]]; // G. C. Greubel, Jun 04 2023
-
z = 60; s = x/(1-x); p = (1-s)^2*(1-2*s);
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* this sequence *)
LinearRecurrence[{7,-16,12},{4,15,52},30] (* Harvey P. Dale, Sep 23 2017 *)
-
Vec((4 -13*x +11*x^2)/((1-2*x)^2*(1-3*x)) + O(x^30)) \\ Colin Barker, Aug 23 2017
-
[8*3^n - 2^(n-1)*(8+n) for n in range(41)] # G. C. Greubel, Jun 04 2023
Comments