A335125
Number of anti-run permutations of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 0, 2, 0, 1, 0, 6, 2, 0, 0, 6, 0, 0, 1, 24, 0, 12, 0, 2, 0, 0, 0, 36, 2, 0, 30, 0, 0, 10, 0, 120, 0, 0, 1, 84, 0, 0, 0, 24, 0, 3, 0, 0, 38, 0, 0, 240, 2, 18, 0, 0, 0, 246, 0, 6, 0, 0, 0, 96, 0, 0, 24, 720, 0, 0, 0, 0, 0, 14, 0, 660, 0, 0, 74, 0, 1, 0, 0
Offset: 1
The a(n) permutations for n = 2, 4, 42, 8, 30, 18:
(1) (12) (1212131) (123) (121213) (12123)
(21) (1213121) (132) (121231) (12132)
(1312121) (213) (121312) (12312)
(231) (121321) (12321)
(312) (123121) (13212)
(321) (131212) (21213)
(132121) (21231)
(212131) (21312)
(213121) (21321)
(312121) (23121)
(31212)
(32121)
The version for the prime indices themselves is
A335452.
Separable partitions are ranked by
A335433.
Separable factorizations are
A335434.
Inseparable partitions are ranked by
A335448.
Patterns contiguously matched by compositions are
A335457.
Strict permutations of prime indices are
A335489.
Cf.
A019472,
A056239,
A106351,
A112798,
A114938,
A278990,
A292884,
A325535,
A335407,
A335463,
A335516,
A335838.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Table[Length[Select[Permutations[nrmptn[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]
A336102
Number of inseparable multisets of size n covering an initial interval of positive integers.
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 8, 8, 20, 20, 48, 48, 112, 112, 256, 256, 576, 576, 1280, 1280, 2816, 2816, 6144, 6144, 13312, 13312, 28672, 28672, 61440, 61440, 131072, 131072, 278528, 278528, 589824, 589824, 1245184, 1245184, 2621440, 2621440, 5505024, 5505024, 11534336
Offset: 0
The a(2) = 1 through a(7) = 8 multisets:
{11} {111} {1111} {11111} {111111} {1111111}
{1112} {11112} {111112} {1111112}
{1222} {12222} {111122} {1111122}
{111123} {1111123}
{112222} {1122222}
{122222} {1222222}
{122223} {1222223}
{123333} {1233333}
The strong (weakly decreasing multiplicities) case is
A025065.
Sequences covering an initial interval are
A000670.
Inseparable partitions are
A325535.
Inseparable factorizations are
A333487.
Anti-run compositions are ranked by
A333489.
Heinz numbers of inseparable partitions are
A335448.
Cf.
A001792,
A019472,
A052841,
A106351,
A124767,
A269134,
A292884,
A335433,
A335126,
A335452,
A335548.
-
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx>1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}]
(* Second program: *)
CoefficientList[Series[x^2*(1 - x) (x + 1)^2/(2 x^2 - 1)^2, {x, 0, 43}], x] (* Michael De Vlieger, Apr 07 2021 *)
A336106
Number of integer partitions of n whose greatest part is at most one more than the sum of the other parts.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 7, 11, 15, 23, 30, 44, 58, 82, 105, 146, 186, 252, 318, 423, 530, 695, 863, 1116, 1380, 1763, 2164, 2738, 3345, 4192, 5096, 6334, 7665, 9459, 11395, 13968, 16765, 20425, 24418, 29588, 35251, 42496, 50460, 60547, 71669, 85628
Offset: 0
The a(1) = 1 through a(8) = 15 partitions:
(1) (11) (21) (22) (32) (33) (43) (44)
(111) (211) (221) (222) (322) (332)
(1111) (311) (321) (331) (422)
(2111) (2211) (421) (431)
(11111) (3111) (2221) (2222)
(21111) (3211) (3221)
(111111) (4111) (3311)
(22111) (4211)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
The inseparable version is
A025065.
The Heinz numbers of these partitions are
A335127.
Sequences covering an initial interval are
A000670.
Inseparable partitions are
A325535.
Separable factorizations are
A335434.
Heinz numbers of separable partitions are
A335433.
-
Table[Length[Select[IntegerPartitions[n],2*Max@@#<=1+n&]],{n,0,15}]
A333487
Number of inseparable factorizations of n into factors > 1.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1
The a(n) factorizations for n = 4, 16, 96, 144, 64, 192:
2*2 4*4 2*2*2*12 12*12 8*8 3*4*4*4
2*2*2*2 2*2*2*2*6 2*2*2*18 4*4*4 2*2*2*24
2*2*2*2*2*3 2*2*2*2*9 2*2*2*8 2*2*2*2*12
2*2*2*2*3*3 2*2*2*2*4 2*2*2*2*2*6
2*2*2*2*2*2 2*2*2*2*3*4
2*2*2*2*2*2*3
The version for partitions is
A325535.
The version for multisets with prescribed multiplicities is
A335126.
Separable partitions are ranked by
A335433.
Inseparable partitions are ranked by
A335448.
Anti-run permutations of prime indices are
A335452.
Patterns contiguously matched by compositions are
A335457.
Cf.
A106351,
A292884,
A295370,
A333628,
A333755,
A335463,
A335125,
A335127,
A335407,
A335474,
A335516,
A335838.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]
A334030
Number of combinatory separations of a multiset whose multiplicities are the parts of the n-th composition in standard order.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 4, 3, 5, 7, 8, 8, 7, 9, 8, 5, 7, 12, 15, 14, 15, 17, 18, 13, 12, 17, 17, 16, 14, 16, 13, 7, 11, 19, 27, 26, 27, 37, 37, 25, 27, 37, 33, 34, 37, 40, 36, 22, 19, 32, 37, 33, 37, 38, 40, 28, 26, 33, 34, 30, 25, 28, 22, 11, 15, 30, 44, 42, 51, 68
Offset: 0
The combinatory separations for n = 1, 3, 5, 9, 10, 13 (heads not shown):
(1) (12) (112) (1112) (1122) (1223)
(1)(1) (1)(11) (1)(111) (11)(11) (1)(112)
(1)(12) (1)(112) (1)(112) (11)(12)
(1)(1)(1) (11)(12) (1)(122) (1)(122)
(1)(1)(11) (12)(12) (1)(123)
(1)(1)(12) (1)(1)(11) (12)(12)
(1)(1)(1)(1) (1)(1)(12) (1)(1)(11)
(1)(1)(1)(1) (1)(1)(12)
(1)(1)(1)(1)
Multisets of compositions are
A034691.
The described multiset is a row of
A095684.
Combinatory separations of normal multisets are
A269134.
Shuffles of compositions are counted by
A292884.
Combinatory separations of prime indices are
A318559.
The version for prime indices is
A318560.
Combinatory separations of strongly normal multisets are
A318563.
Multiset partitions of the described multiset are
A333942.
All of the following pertain to compositions in standard order (
A066099):
- Constant compositions are
A272919.
- Length of Lyndon factorization is
A329312.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
ptnToNorm[y_]:=Join@@Table[ConstantArray[i,y[[i]]],{i,Length[y]}];
Table[Length[Union[Table[Sort[normize/@m],{m,mps[ptnToNorm[stc[n]]]}]]],{n,0,100}]
A333940
Number of Lyndon factorizations of the k-th composition in standard order.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 5, 1, 2, 2, 4, 1, 4, 2, 7, 1, 2, 1, 4, 1, 2, 1, 7, 1, 2, 2, 4, 2, 5, 2, 7, 1, 2, 3, 9, 2, 5, 2, 12, 1, 2, 1, 4, 1, 2, 2, 7, 1, 2, 1, 4, 1, 2, 1, 11, 1, 2, 2, 4, 2, 5, 2, 7, 1, 4, 4, 11, 2, 5, 2, 12, 1, 2, 2, 4, 1, 7
Offset: 0
We have a(300) = 5, because the 300th composition (3,2,1,3) has the following Lyndon factorizations:
((3,2,1,3))
((1,3),(3,2))
((2),(3,1,3))
((3),(2,1,3))
((2),(3),(1,3))
Binary necklaces are counted by
A000031.
Necklace compositions are counted by
A008965.
Necklaces covering an initial interval are counted by
A019536.
Lyndon compositions are counted by
A059966.
Numbers whose reversed binary expansion is a necklace are
A328595.
Numbers whose prime signature is a necklace are
A329138.
Length of Lyndon factorization of binary expansion is
A211100.
Length of co-Lyndon factorization of binary expansion is
A329312.
Length of co-Lyndon factorization of reversed binary expansion is
A329326.
Length of Lyndon factorization of reversed binary expansion is
A329313.
All of the following pertain to compositions in standard order (
A066099):
- Rotational symmetries are counted by
A138904.
- Constant compositions are
A272919.
- Co-Lyndon compositions are
A326774.
- Aperiodic compositions are
A328594.
- Reversed co-necklaces are
A328595.
- Length of Lyndon factorization is
A329312.
- Length of co-Lyndon factorization is
A334029.
- Combinatory separations are
A334030.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
lynprod[]:={};lynprod[{},b_List]:=b;lynprod[a_List,{}]:=a;lynprod[a_List]:=a;
lynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{lynprod[{a},{x,b}],lynprod[{x,a},{b}]}]],{2,1},Prepend[lynprod[{a},{y,b}],x],{1,2},Prepend[lynprod[{x,a},{b}],y]];
lynprod[a_List,b_List,c__List]:=lynprod[a,lynprod[b,c]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
Table[Length[Select[dealings[stc[n]],lynprod@@#==stc[n]&]],{n,0,100}]
A333765
Number of co-Lyndon factorizations of the k-th composition in standard order.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 2, 4, 4, 7, 7, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 5, 2, 5, 2, 4, 4, 9, 4, 7, 7, 12, 11, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 4, 1
Offset: 0
The a(54) = 5, a(61) = 7, and a(237) = 9 factorizations:
((1,2,1,2)) ((1,1,1,2,1)) ((1,1,2,1,2,1))
((1),(2,1,2)) ((1),(1,1,2,1)) ((1),(1,2,1,2,1))
((1,2),(2,1)) ((1,1),(1,2,1)) ((1,1),(2,1,2,1))
((2),(1,2,1)) ((2,1),(1,1,1)) ((1,2,1),(1,2,1))
((1),(2),(2,1)) ((1),(1),(1,2,1)) ((2,1),(1,1,2,1))
((1),(1,1),(2,1)) ((1),(1),(2,1,2,1))
((1),(1),(1),(2,1)) ((1,1),(2,1),(2,1))
((1),(2,1),(1,2,1))
((1),(1),(2,1),(2,1))
Binary necklaces are counted by
A000031.
Necklace compositions are counted by
A008965.
Necklaces covering an initial interval are counted by
A019536.
Lyndon compositions are counted by
A059966.
Numbers whose reversed binary expansion is a necklace are
A328595.
Numbers whose prime signature is a necklace are
A329138.
Length of Lyndon factorization of binary expansion is
A211100.
Length of co-Lyndon factorization of binary expansion is
A329312.
Length of co-Lyndon factorization of reversed binary expansion is
A329326.
Length of Lyndon factorization of reversed binary expansion is
A329313.
All of the following pertain to compositions in standard order (
A066099):
- Rotational symmetries are counted by
A138904.
- Constant compositions are
A272919.
- Co-Lyndon compositions are
A326774.
- Aperiodic compositions are
A328594.
- Reversed co-necklaces are
A328595.
- Length of Lyndon factorization is
A329312.
- Length of co-Lyndon factorization is
A334029.
- Combinatory separations are
A334030.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
colynprod[]:={};colynprod[{},b_List]:=b;colynprod[a_List,{}]:=a;colynprod[a_List]:=a;
colynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{colynprod[{a},{x,b}],colynprod[{x,a},{b}]}]],{1,2},Prepend[colynprod[{a},{y,b}],x],{2,1},Prepend[colynprod[{x,a},{b}],y]];
colynprod[a_List,b_List,c__List]:=colynprod[a,colynprod[b,c]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
Table[Length[Select[dealings[stc[n]],colynprod@@#==stc[n]&]],{n,0,100}]
A335407
Number of anti-run permutations of the prime indices of n!.
Original entry on oeis.org
1, 1, 1, 2, 0, 2, 3, 54, 0, 30, 105, 6090, 1512, 133056, 816480, 127209600, 0, 10090080, 562161600, 69864795000, 49989139200, 29593652088000, 382147120555200, 41810689605484800, 4359985823793600, 3025062801079038720, 49052072750637116160, 25835971971637227375360
Offset: 0
The a(0) = 1 through a(6) = 3 anti-run permutations:
() () (1) (1,2) . (1,2,1,3,1) (1,2,1,2,1,3,1)
(2,1) (1,3,1,2,1) (1,2,1,3,1,2,1)
(1,3,1,2,1,2,1)
The version for Mersenne numbers is
A335432.
Anti-run patterns are counted by
A005649.
Permutations of prime indices are
A008480.
Separable partitions are ranked by
A335433.
Inseparable partitions are ranked by
A335448.
Anti-run permutations of prime indices are
A335452.
Strict permutations of prime indices are
A335489.
Factorial numbers:
A000142,
A001222,
A002982,
A007489,
A022559,
A027423,
A054991,
A108731,
A181819,
A181821,
A325272,
A325273,
A325617.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[Select[Permutations[primeMS[n!]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}]
-
\\ See A335452 for count.
a(n)={count(factor(n!)[,2])} \\ Andrew Howroyd, Feb 03 2021
A334029
Length of the co-Lyndon factorization of the k-th composition in standard order.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2
Offset: 0
The 441st composition in standard order is (1,2,1,1,3,1), with co-Lyndon factorization {(1),(3,1),(2,1,1)}, so a(441) = 3.
The version for binary expansion is (also)
A329312.
The version for reversed binary expansion is
A329326.
Binary Lyndon/co-Lyndon words are counted by
A001037.
Necklaces covering an initial interval are
A019536.
Lyndon/co-Lyndon compositions are counted by
A059966
Length of Lyndon factorization of binomial expansion is
A211100.
Numbers whose prime signature is a necklace are
A329138.
Length of Lyndon factorization of reversed binary expansion is
A329313.
A list of all binary co-Lyndon words is
A329318.
All of the following pertain to compositions in standard order (
A066099):
- Rotational symmetries are counted by
A138904.
- Constant compositions are
A272919.
- Co-Lyndon compositions are
A326774.
- Aperiodic compositions are
A328594.
- Reversed co-necklaces are
A328595.
- Co-Lyndon factorizations are counted by
A333765.
- Lyndon factorizations are counted by
A333940.
Cf.
A034691,
A060223,
A102659,
A211097,
A292884,
A296372,
A328596,
A329358,
A329359,
A329362,
A329400,
A329401,
A333939.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And];
colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],colynQ[Take[q,#1]]&]]]]
Table[Length[colynfac[stc[n]]],{n,0,100}]
A335509
Number of patterns of length n matching the pattern (1,1,2).
Original entry on oeis.org
0, 0, 0, 1, 15, 181, 2163, 27133, 364395, 5272861, 82289163, 1383131773, 24978057195, 483269202781, 9987505786443, 219821796033853, 5137810967933355, 127169580176271901, 3324712113052429323, 91585136315240091133, 2652142325158529483115, 80562824634615270041821
Offset: 0
The a(3) = 1 through a(4) = 15 patterns:
(1,1,2) (1,1,1,2)
(1,1,2,1)
(1,1,2,2)
(1,1,2,3)
(1,1,3,2)
(1,2,1,2)
(1,2,1,3)
(1,2,2,3)
(1,3,1,2)
(2,1,1,2)
(2,1,1,3)
(2,1,2,3)
(2,2,1,3)
(2,2,3,1)
(3,1,1,2)
The complement
A001710 is the avoiding version.
Compositions matching this pattern are counted by
A335470 and ranked by
A335476.
Permutations of prime indices matching this pattern are counted by
A335446.
Patterns matching the pattern (1,1) are counted by
A019472.
Combinatory separations are counted by
A269134.
Patterns matched by standard compositions are counted by
A335454.
Minimal patterns avoided by a standard composition are counted by
A335465.
Patterns matching (1,2,3) are counted by
A335515.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,x_,_,y_,_}/;x
-
seq(n)={Vec(serlaplace(1/(2-exp(x + O(x*x^n))) - (2-2*x+x^2)/(2*(1-x)^2)), -(n+1))} \\ Andrew Howroyd, Dec 31 2020
Comments