cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A335125 Number of anti-run permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 6, 2, 0, 0, 6, 0, 0, 1, 24, 0, 12, 0, 2, 0, 0, 0, 36, 2, 0, 30, 0, 0, 10, 0, 120, 0, 0, 1, 84, 0, 0, 0, 24, 0, 3, 0, 0, 38, 0, 0, 240, 2, 18, 0, 0, 0, 246, 0, 6, 0, 0, 0, 96, 0, 0, 24, 720, 0, 0, 0, 0, 0, 14, 0, 660, 0, 0, 74, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
An anti-run is a sequence with no adjacent equal parts.

Examples

			The a(n) permutations for n = 2, 4, 42, 8, 30, 18:
  (1)  (12)  (1212131)  (123)  (121213)  (12123)
       (21)  (1213121)  (132)  (121231)  (12132)
             (1312121)  (213)  (121312)  (12312)
                        (231)  (121321)  (12321)
                        (312)  (123121)  (13212)
                        (321)  (131212)  (21213)
                               (132121)  (21231)
                               (212131)  (21312)
                               (213121)  (21321)
                               (312121)  (23121)
                                         (31212)
                                         (32121)
		

Crossrefs

Positions of zeros are A335126.
Positions of nonzeros are A335127.
The version for the prime indices themselves is A335452.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Separable factorizations are A335434.
Inseparable partitions are ranked by A335448.
Patterns contiguously matched by compositions are A335457.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A336102 Number of inseparable multisets of size n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 8, 8, 20, 20, 48, 48, 112, 112, 256, 256, 576, 576, 1280, 1280, 2816, 2816, 6144, 6144, 13312, 13312, 28672, 28672, 61440, 61440, 131072, 131072, 278528, 278528, 589824, 589824, 1245184, 1245184, 2621440, 2621440, 5505024, 5505024, 11534336
Offset: 0

Views

Author

Gus Wiseman, Jul 08 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one.
Also the number of compositions of n whose greatest part is greater than the sum of its remaining parts plus one. For example, the a(2) = 1 through a(7) = 8 compositions are:
(2) (3) (4) (5) (6) (7)
(1,3) (1,4) (1,5) (1,6)
(3,1) (4,1) (2,4) (2,5)
(4,2) (5,2)
(5,1) (6,1)
(1,1,4) (1,1,5)
(1,4,1) (1,5,1)
(4,1,1) (5,1,1)

Examples

			The a(2) = 1 through a(7) = 8 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                                {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1222222}
                                {122223}  {1222223}
                                {123333}  {1233333}
		

Crossrefs

The strong (weakly decreasing multiplicities) case is A025065.
The bisection is A049610.
The separable version is A336103.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.

Programs

  • Mathematica
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx>1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}]
    (* Second program: *)
    CoefficientList[Series[x^2*(1 - x) (x + 1)^2/(2 x^2 - 1)^2, {x, 0, 43}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(2*n) = a(2*n + 1) = A049610(n + 1).
a(n) = 2^(n-1) - A336103(n).
A001792 repeated for n > 1. David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 4*a(n-2) - 4*a(n-4) for n > 5.
G.f.: x^2*(1 - x)*(x + 1)^2/(2*x^2 - 1)^2. (End)

A336106 Number of integer partitions of n whose greatest part is at most one more than the sum of the other parts.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 7, 11, 15, 23, 30, 44, 58, 82, 105, 146, 186, 252, 318, 423, 530, 695, 863, 1116, 1380, 1763, 2164, 2738, 3345, 4192, 5096, 6334, 7665, 9459, 11395, 13968, 16765, 20425, 24418, 29588, 35251, 42496, 50460, 60547, 71669, 85628
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

Also the number of separable strong multisets of length n covering an initial interval of positive integers. A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (222)     (322)      (332)
                    (1111)  (311)    (321)     (331)      (422)
                            (2111)   (2211)    (421)      (431)
                            (11111)  (3111)    (2221)     (2222)
                                     (21111)   (3211)     (3221)
                                     (111111)  (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The inseparable version is A025065.
The Heinz numbers of these partitions are A335127.
The non-strong version is A336103.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Separable factorizations are A335434.
Heinz numbers of separable partitions are A335433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],2*Max@@#<=1+n&]],{n,0,15}]

A333487 Number of inseparable factorizations of n into factors > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.

Examples

			The a(n) factorizations for n = 4, 16, 96, 144, 64, 192:
  2*2  4*4      2*2*2*12     12*12        8*8          3*4*4*4
       2*2*2*2  2*2*2*2*6    2*2*2*18     4*4*4        2*2*2*24
                2*2*2*2*2*3  2*2*2*2*9    2*2*2*8      2*2*2*2*12
                             2*2*2*2*3*3  2*2*2*2*4    2*2*2*2*2*6
                                          2*2*2*2*2*2  2*2*2*2*3*4
                                                       2*2*2*2*2*2*3
		

Crossrefs

The version for partitions is A325535.
The version for multisets with prescribed multiplicities is A335126.
The separable version is A335434.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Patterns contiguously matched by compositions are A335457.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]

Formula

a(n) + A335434(n) = A001055(n).

A334030 Number of combinatory separations of a multiset whose multiplicities are the parts of the n-th composition in standard order.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 3, 5, 7, 8, 8, 7, 9, 8, 5, 7, 12, 15, 14, 15, 17, 18, 13, 12, 17, 17, 16, 14, 16, 13, 7, 11, 19, 27, 26, 27, 37, 37, 25, 27, 37, 33, 34, 37, 40, 36, 22, 19, 32, 37, 33, 37, 38, 40, 28, 26, 33, 34, 30, 25, 28, 22, 11, 15, 30, 44, 42, 51, 68
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2020

Keywords

Comments

A multiset is normal if it covers an initial interval of positive integers. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of (3,3,5,5,5,6) is (1,1,2,2,2,3).
A pair h<={g_1,...,g_k} is a combinatory separation iff there exists a multiset partition of h whose multiset of block-types is {g_1,...,g_k}. For example, the (headless) combinatory separations of the multiset (1122) are (1122), (1)(112), (1)(122), (11)(11), (12)(12), (1)(1)(11), (1)(1)(12), (1)(1)(1)(1). This list excludes (12)(11), because one cannot partition (1122) into two blocks where one block has two distinct elements and the other has two equal elements.

Examples

			The combinatory separations for n = 1, 3, 5, 9, 10, 13 (heads not shown):
  (1)  (12)    (112)      (1112)        (1122)        (1223)
       (1)(1)  (1)(11)    (1)(111)      (11)(11)      (1)(112)
               (1)(12)    (1)(112)      (1)(112)      (11)(12)
               (1)(1)(1)  (11)(12)      (1)(122)      (1)(122)
                          (1)(1)(11)    (12)(12)      (1)(123)
                          (1)(1)(12)    (1)(1)(11)    (12)(12)
                          (1)(1)(1)(1)  (1)(1)(12)    (1)(1)(11)
                                        (1)(1)(1)(1)  (1)(1)(12)
                                                      (1)(1)(1)(1)
		

Crossrefs

Multisets of compositions are A034691.
The described multiset is a row of A095684.
Combinatory separations of normal multisets are A269134.
Shuffles of compositions are counted by A292884.
Combinatory separations of prime indices are A318559.
The version for prime indices is A318560.
Combinatory separations of strongly normal multisets are A318563.
Multiset partitions of the described multiset are A333942.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Length of Lyndon factorization is A329312.
- Dealings are counted by A333939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    ptnToNorm[y_]:=Join@@Table[ConstantArray[i,y[[i]]],{i,Length[y]}];
    Table[Length[Union[Table[Sort[normize/@m],{m,mps[ptnToNorm[stc[n]]]}]]],{n,0,100}]

A333940 Number of Lyndon factorizations of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 5, 1, 2, 2, 4, 1, 4, 2, 7, 1, 2, 1, 4, 1, 2, 1, 7, 1, 2, 2, 4, 2, 5, 2, 7, 1, 2, 3, 9, 2, 5, 2, 12, 1, 2, 1, 4, 1, 2, 2, 7, 1, 2, 1, 4, 1, 2, 1, 11, 1, 2, 2, 4, 2, 5, 2, 7, 1, 4, 4, 11, 2, 5, 2, 12, 1, 2, 2, 4, 1, 7
Offset: 0

Views

Author

Gus Wiseman, Apr 13 2020

Keywords

Comments

We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon factorization of a composition c is a multiset of compositions whose Lyndon product is c.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also the number of multiset partitions of the Lyndon-word factorization of the n-th composition in standard order.

Examples

			We have  a(300) = 5, because the 300th composition (3,2,1,3) has the following Lyndon factorizations:
  ((3,2,1,3))
  ((1,3),(3,2))
  ((2),(3,1,3))
  ((3),(2,1,3))
  ((2),(3),(1,3))
		

Crossrefs

The dual version is A333765.
Binary necklaces are counted by A000031.
Necklace compositions are counted by A008965.
Necklaces covering an initial interval are counted by A019536.
Lyndon compositions are counted by A059966.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of binary expansion is A211100.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of co-Lyndon factorization of reversed binary expansion is A329326.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Length of Lyndon factorization is A329312.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Dealing are counted by A333939.
- Reversed necklaces are A333943.
- Length of co-Lyndon factorization is A334029.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    lynprod[]:={};lynprod[{},b_List]:=b;lynprod[a_List,{}]:=a;lynprod[a_List]:=a;
    lynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{lynprod[{a},{x,b}],lynprod[{x,a},{b}]}]],{2,1},Prepend[lynprod[{a},{y,b}],x],{1,2},Prepend[lynprod[{x,a},{b}],y]];
    lynprod[a_List,b_List,c__List]:=lynprod[a,lynprod[b,c]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
    Table[Length[Select[dealings[stc[n]],lynprod@@#==stc[n]&]],{n,0,100}]

Formula

For n > 0, Sum_{k = 2^(n-1)..2^n-1} a(k) = A034691(n).

A333765 Number of co-Lyndon factorizations of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 2, 4, 4, 7, 7, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 5, 2, 5, 2, 4, 4, 9, 4, 7, 7, 12, 11, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 4, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 13 2020

Keywords

Comments

We define the co-Lyndon product of two or more finite sequences to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (2,3,1) with (2,1,3) is (2,1,2,3,1,3), the product of (2,2,1) with (2,1,3) is (2,1,2,2,1,3), and the product of (1,2,2) with (2,1,2,1) is (1,2,1,2,1,2,2). A co-Lyndon factorization of a composition c is a multiset of compositions whose co-Lyndon product is c.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also the number of multiset partitions of the co-Lyndon-word factorization of the n-th composition in standard order.

Examples

			The a(54) = 5, a(61) = 7, and a(237) = 9 factorizations:
  ((1,2,1,2))      ((1,1,1,2,1))        ((1,1,2,1,2,1))
  ((1),(2,1,2))    ((1),(1,1,2,1))      ((1),(1,2,1,2,1))
  ((1,2),(2,1))    ((1,1),(1,2,1))      ((1,1),(2,1,2,1))
  ((2),(1,2,1))    ((2,1),(1,1,1))      ((1,2,1),(1,2,1))
  ((1),(2),(2,1))  ((1),(1),(1,2,1))    ((2,1),(1,1,2,1))
                   ((1),(1,1),(2,1))    ((1),(1),(2,1,2,1))
                   ((1),(1),(1),(2,1))  ((1,1),(2,1),(2,1))
                                        ((1),(2,1),(1,2,1))
                                        ((1),(1),(2,1),(2,1))
		

Crossrefs

The dual version is A333940.
Binary necklaces are counted by A000031.
Necklace compositions are counted by A008965.
Necklaces covering an initial interval are counted by A019536.
Lyndon compositions are counted by A059966.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of binary expansion is A211100.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of co-Lyndon factorization of reversed binary expansion is A329326.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Length of Lyndon factorization is A329312.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Dealings are counted by A333939.
- Reversed necklaces are A333943.
- Length of co-Lyndon factorization is A334029.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynprod[]:={};colynprod[{},b_List]:=b;colynprod[a_List,{}]:=a;colynprod[a_List]:=a;
    colynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{colynprod[{a},{x,b}],colynprod[{x,a},{b}]}]],{1,2},Prepend[colynprod[{a},{y,b}],x],{2,1},Prepend[colynprod[{x,a},{b}],y]];
    colynprod[a_List,b_List,c__List]:=colynprod[a,colynprod[b,c]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
    Table[Length[Select[dealings[stc[n]],colynprod@@#==stc[n]&]],{n,0,100}]

Formula

For n > 0, Sum_{k = 2^(n-1)..2^n-1} a(k) = A034691(n).

A335407 Number of anti-run permutations of the prime indices of n!.

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 3, 54, 0, 30, 105, 6090, 1512, 133056, 816480, 127209600, 0, 10090080, 562161600, 69864795000, 49989139200, 29593652088000, 382147120555200, 41810689605484800, 4359985823793600, 3025062801079038720, 49052072750637116160, 25835971971637227375360
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

An anti-run is a sequence with no adjacent equal parts.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: Only vanishes at n = 4 and n = 8.
a(16) = 0. Proof: 16! = 2^15 * m where bigomega(m) = A001222(m) = 13. We can't separate 15 1's with 13 other numbers. - David A. Corneth, Jul 04 2020

Examples

			The a(0) = 1 through a(6) = 3 anti-run permutations:
  ()  ()  (1)  (1,2)  .  (1,2,1,3,1)  (1,2,1,2,1,3,1)
               (2,1)     (1,3,1,2,1)  (1,2,1,3,1,2,1)
                                      (1,3,1,2,1,2,1)
		

Crossrefs

The version for Mersenne numbers is A335432.
Anti-run compositions are A003242.
Anti-run patterns are counted by A005649.
Permutations of prime indices are A008480.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Inseparable partitions are ranked by A335448.
Anti-run permutations of prime indices are A335452.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n!]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,10}]
  • PARI
    \\ See A335452 for count.
    a(n)={count(factor(n!)[,2])} \\ Andrew Howroyd, Feb 03 2021

Formula

a(n) = A335452(A000142(n)). - Andrew Howroyd, Feb 03 2021

Extensions

Terms a(14) and beyond from Andrew Howroyd, Feb 03 2021

A334029 Length of the co-Lyndon factorization of the k-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 5, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 14 2020

Keywords

Comments

We define the co-Lyndon product of two or more finite sequences to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, the co-Lyndon product of (2,3,1) with (2,1,3) is (2,1,2,3,1,3), the product of (2,2,1) with (2,1,3) is (2,1,2,2,1,3), and the product of (1,2,2) with (2,1,2,1) is (1,2,1,2,1,2,2). A co-Lyndon word is a finite sequence that is prime with respect to the co-Lyndon product. Equivalently, a co-Lyndon word is a finite sequence that is lexicographically strictly greater than all of its cyclic rotations. Every finite sequence has a unique (orderless) factorization into co-Lyndon words, and if these factors are arranged in a certain order, their concatenation is equal to their co-Lyndon product. For example, (1,0,0,1) has co-Lyndon factorization {(1),(1,0,0)}.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 441st composition in standard order is (1,2,1,1,3,1), with co-Lyndon factorization {(1),(3,1),(2,1,1)}, so a(441) = 3.
		

Crossrefs

The dual version is A329312.
The version for binary expansion is (also) A329312.
The version for reversed binary expansion is A329326.
Binary Lyndon/co-Lyndon words are counted by A001037.
Necklaces covering an initial interval are A019536.
Lyndon/co-Lyndon compositions are counted by A059966
Length of Lyndon factorization of binomial expansion is A211100.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of reversed binary expansion is A329313.
A list of all binary co-Lyndon words is A329318.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Reversed necklaces are A333943.
- Co-necklaces are A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#1],q}]=={RotateRight[q,#1],q}&,Length[q]-1,1,And];
    colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],colynQ[Take[q,#1]]&]]]]
    Table[Length[colynfac[stc[n]]],{n,0,100}]

A335509 Number of patterns of length n matching the pattern (1,1,2).

Original entry on oeis.org

0, 0, 0, 1, 15, 181, 2163, 27133, 364395, 5272861, 82289163, 1383131773, 24978057195, 483269202781, 9987505786443, 219821796033853, 5137810967933355, 127169580176271901, 3324712113052429323, 91585136315240091133, 2652142325158529483115, 80562824634615270041821
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

Also the number of (1,2,1)-matching patterns of length n.
Also the number of (2,1,2)-matching patterns of length n.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 15 patterns:
  (1,1,2)  (1,1,1,2)
           (1,1,2,1)
           (1,1,2,2)
           (1,1,2,3)
           (1,1,3,2)
           (1,2,1,2)
           (1,2,1,3)
           (1,2,2,3)
           (1,3,1,2)
           (2,1,1,2)
           (2,1,1,3)
           (2,1,2,3)
           (2,2,1,3)
           (2,2,3,1)
           (3,1,1,2)
		

Crossrefs

The complement A001710 is the avoiding version.
Compositions matching this pattern are counted by A335470 and ranked by A335476.
Permutations of prime indices matching this pattern are counted by A335446.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matching (1,2,3) are counted by A335515.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,x_,_,y_,_}/;x
    				
  • PARI
    seq(n)={Vec(serlaplace(1/(2-exp(x + O(x*x^n))) - (2-2*x+x^2)/(2*(1-x)^2)), -(n+1))} \\ Andrew Howroyd, Dec 31 2020

Formula

E.g.f.: 1/(2-exp(x)) - (2-2*x+x^2)/(2*(1-x)^2). - Andrew Howroyd, Dec 31 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 31 2020
Previous Showing 11-20 of 25 results. Next