cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A378226 XOR-Moebius transform of A318457, where A318457(n) = n XOR (sigma(n)-n).

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 7, 8, 15, 4, 11, 24, 13, 0, 1, 16, 17, 8, 19, 4, 27, 16, 23, 40, 27, 4, 27, 0, 29, 52, 31, 32, 39, 36, 45, 8, 37, 32, 57, 16, 41, 0, 43, 24, 5, 32, 47, 80, 63, 0, 53, 20, 53, 104, 41, 112, 63, 4, 59, 124, 61, 0, 7, 64, 91, 48, 67, 76, 75, 36, 71, 0, 73, 68, 103, 56, 83, 36, 79, 48, 111, 84, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

Unique sequence satisfying SumXOR_{d divides n} a(d) = A318457(n) for all n > 0, where SumXOR is the analog of summation under the binary XOR operation. See A295901 for a list of some of the properties of Xor-Moebius transform.

Crossrefs

Cf. A000203, A001065, A003987, A318457, A378227, A378230 (positions of 0's), A378441 (fixed points).

Programs

  • PARI
    A318457(n) = bitxor(n,sigma(n)-n);
    A378226(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A318457(d)))); (v); }

A318503 Xor-Moebius transform of A001065, the sum of proper divisors.

Original entry on oeis.org

0, 1, 1, 2, 1, 6, 1, 4, 5, 8, 1, 20, 1, 10, 9, 8, 1, 22, 1, 28, 11, 14, 1, 48, 7, 16, 9, 20, 1, 44, 1, 16, 15, 20, 13, 52, 1, 22, 17, 32, 1, 48, 1, 36, 45, 26, 1, 96, 9, 36, 21, 60, 1, 94, 17, 88, 23, 32, 1, 76, 1, 34, 39, 32, 19, 72, 1, 44, 27, 68, 1, 120, 1, 40, 63, 84, 19, 92, 1, 80, 37, 44, 1, 184, 23, 46, 33, 112, 1, 132
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2018

Keywords

Comments

Unique sequence satisfying SumXOR_{d divides n} a(d) = sigma(n)-n for all n > 0, where SumXOR is the analog of summation under the binary XOR operation. See A295901 for a list of some of the properties of Xor-Moebius transform.

Crossrefs

Programs

  • PARI
    A318503(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, sigma(d)-d))); (v); } \\ after code in A295901.

Formula

a(n) = A318501(n) XOR A318502(n).

A324717 Xor-Moebius transform of A324716, where A324716(n) = bitxor(2*A156552(n), bitand(2*A156552(n), A323243(n))).

Original entry on oeis.org

0, 2, 4, 0, 8, 14, 16, 4, 4, 24, 32, 26, 64, 50, 8, 0, 128, 28, 256, 48, 20, 96, 512, 48, 8, 192, 4, 102, 1024, 26, 2048, 24, 100, 384, 24, 28, 4096, 770, 64, 96, 8192, 118, 16384, 192, 8, 1536, 32768, 104, 16, 58, 388, 384, 65536, 52, 40, 196, 256, 3074, 131072, 114, 262144, 6144, 68, 8, 200, 166, 524288, 772, 1540, 120, 1048576
Offset: 1

Views

Author

Antti Karttunen, Mar 15 2019

Keywords

Comments

Properties of Xor-Moebius transform are explained in A295901.

Crossrefs

Programs

  • PARI
    A324717(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A324716(d)))); (v); }; \\ For other code, see A324716.

A341335 For any number n with binary expansion (b_1, ..., b_k), the binary expansion of a(n), say (c_1, ..., c_k) satisfies c_m = Sum_{d | m} b_d mod 2 for m = 1..k.

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 5, 4, 15, 14, 13, 12, 10, 11, 8, 9, 31, 30, 29, 28, 27, 26, 25, 24, 21, 20, 23, 22, 17, 16, 19, 18, 63, 62, 61, 60, 59, 58, 57, 56, 54, 55, 52, 53, 50, 51, 48, 49, 42, 43, 40, 41, 46, 47, 44, 45, 35, 34, 33, 32, 39, 38, 37, 36, 127, 126, 125
Offset: 0

Views

Author

Rémy Sigrist, Apr 25 2021

Keywords

Comments

This sequence is a permutation of the nonnegative integers with inverse A341336.
This sequence operates on binary expansions in the same way as the XOR-Moebius transform described in A295901.
This sequence has only two fixed points: a(0) = 0, a(1) = 1.

Examples

			For n = 42:
- the binary expansion of 42 is (1, 0, 1, 0, 1, 0),
- the binary expansion of a(42) has 6 digits:
    - the 1st digit = 1                     mod 2 = 1,
    - the 2nd digit = 1 + 0                 mod 2 = 1,
    - the 3rd digit = 1     + 1             mod 2 = 0,
    - the 4th digit = 1 + 0     + 0         mod 2 = 1,
    - the 5th digit = 1             + 1     mod 2 = 0,
    - the 6th digit = 1 + 0 + 1         + 0 mod 2 = 0,
- so the binary expansion of a(42) is "110100",
- and a(42) = 52.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (b=binary(n), c=vector(#b)); for (m=1, #b, fordiv (m, d, c[m]=(c[m] + b[d])%2)); fromdigits(c, 2) }

Formula

a(n) < 2^k for any n < 2^k.
a(floor(n/2)) = floor(a(n)/2).
a(2^k) = 2^(k+1) - 1 for any k >= 0.

A378227 XOR-Moebius transform of A318467, where A318467(n) = 2*n XOR sigma(n).

Original entry on oeis.org

3, 4, 1, 8, 15, 6, 5, 16, 29, 14, 25, 12, 23, 6, 11, 32, 51, 30, 49, 12, 13, 22, 53, 24, 33, 14, 1, 12, 39, 126, 29, 64, 105, 70, 127, 20, 111, 70, 99, 24, 123, 58, 121, 12, 15, 38, 109, 48, 93, 30, 31, 28, 95, 22, 51, 24, 17, 14, 73, 172, 71, 6, 1, 128, 205, 114, 193, 140, 221, 102, 197, 72, 219, 142, 205, 108
Offset: 1

Views

Author

Antti Karttunen, Nov 26 2024

Keywords

Comments

Unique sequence satisfying SumXOR_{d divides n} a(d) = A318467(n) for all n > 0, where SumXOR is the analog of summation under the binary XOR operation. See A295901 for a list of some of the properties of Xor-Moebius transform.

Crossrefs

Programs

  • PARI
    A318467(n) = bitxor(2*n, sigma(n));
    A378227(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A318467(d)))); (v); }

Formula

a(n) = 2*A256739(n) XOR A296203(n).

A331700 Binary XOR of squares of divisors of n.

Original entry on oeis.org

1, 5, 8, 21, 24, 40, 48, 85, 89, 120, 120, 168, 168, 240, 240, 341, 288, 317, 360, 504, 384, 408, 528, 680, 617, 520, 640, 1008, 840, 816, 960, 1365, 1072, 1440, 1248, 1197, 1368, 1224, 1360, 2040, 1680, 1920, 1848, 1560, 1864, 2640, 2208, 2728, 2385, 3021
Offset: 1

Views

Author

Rémy Sigrist, Jan 25 2020

Keywords

Examples

			For n = 6:
- the divisors of 6 are 1, 2, 3 and 6,
- so a(6) = 1 XOR 4 XOR 9 XOR 36 = 40.
		

Crossrefs

Programs

  • Mathematica
    Table[BitXor@@(Divisors[n]^2),{n,50}] (* Harvey P. Dale, May 03 2023 *)
  • PARI
    a(n) = my (s=0); fordiv (n, d, s=bitxor(s, d^2)); s
    
  • Python
    from functools import reduce
    from operator import xor
    from sympy import divisors
    def A331700(n): return reduce(xor,(d**2 for d in divisors(n,generator=True))) # Chai Wah Wu, Jul 01 2022
Previous Showing 11-16 of 16 results.