cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A351015 Smallest k such that the k-th composition in standard order has n distinct runs.

Original entry on oeis.org

0, 1, 5, 27, 155, 1655, 18039, 281975
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
It would be very interesting to have a formula or general construction for a(n). - Gus Wiseman, Feb 12 2022

Examples

			The terms together with their binary expansions and corresponding compositions begin:
       0:                    0  ()
       1:                    1  (1)
       5:                  101  (2,1)
      27:                11011  (1,2,1,1)
     155:             10011011  (3,1,2,1,1)
    1655:          11001110111  (1,3,1,1,2,1,1,1)
   18039:      100011001110111  (4,1,3,1,1,2,1,1,1)
  281975:  1000100110101110111  (4,3,1,2,2,1,1,2,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A006939.
Counting not necessarily distinct runs gives A113835 (up to zero).
Using binary expansions instead of standard compositions gives A350952.
These are the positions of first appearances in A351014.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    s=Table[Length[Union[Split[stc[n]]]],{n,0,1000}];
    Table[Position[s,k][[1,1]]-1,{k,Union[s]}]

A351016 Number of binary words of length n with all distinct runs.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 36, 54, 92, 154, 244, 382, 652, 994, 1572, 2414, 3884, 5810, 8996, 13406, 21148, 31194, 47508, 70086, 104844, 156738, 231044, 338998, 496300, 721042, 1064932, 1536550, 2232252, 3213338, 4628852, 6603758, 9554156, 13545314, 19354276
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Comments

These are binary words where the runs of zeros have all distinct lengths and the runs of ones also have all distinct lengths. For n > 0 this is twice the number of terms of A175413 that have n digits in binary.

Examples

			The a(0) = 1 through a(4) = 12 binary words:
  ()   0    00    000    0000
       1    01    001    0001
            10    011    0010
            11    100    0011
                  110    0100
                  111    0111
                         1000
                         1011
                         1100
                         1101
                         1110
                         1111
For example, the word (1,1,0,1) has three runs (1,1), (0), (1), which are all distinct, so is counted under a(4).
		

Crossrefs

The version for compositions is A351013, lengths A329739, ranked by A351290.
The version for [run-]lengths is A351017.
The version for expansions is A351018, lengths A032020, ranked by A175413.
The version for patterns is A351200, lengths A351292.
The version for permutations of prime factors is A351202.
A000120 counts binary weight.
A001037 counts binary Lyndon words, necklaces A000031, aperiodic A027375.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329767 counts binary words by runs-resistance.
A351014 counts distinct runs in standard compositions.
A351204 counts partitions whose permutations all have all distinct runs.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],UnsameQ@@Split[#]&]],{n,0,10}]
  • Python
    from itertools import groupby, product
    def adr(s):
        runs = [(k, len(list(g))) for k, g in groupby(s)]
        return len(runs) == len(set(runs))
    def a(n):
        if n == 0: return 1
        return 2*sum(adr("1"+"".join(w)) for w in product("01", repeat=n-1))
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 08 2022

Formula

a(n>0) = 2 * A351018(n).

Extensions

a(25)-a(32) from Michael S. Branicky, Feb 08 2022
a(33)-a(38) from David A. Corneth, Feb 08 2022

A382879 Positions of 0 in A382857 (permutations of prime indices with equal run-lengths).

Original entry on oeis.org

24, 40, 48, 54, 56, 80, 88, 96, 104, 112, 135, 136, 152, 160, 162, 176, 184, 189, 192, 208, 224, 232, 240, 248, 250, 272, 288, 296, 297, 304, 320, 328, 336, 344, 351, 352, 368, 375, 376, 384, 405, 416, 424, 448, 459, 464, 472, 480, 486, 488, 496, 513, 528, 536
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
   24: {1,1,1,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   80: {1,1,1,1,3}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
  104: {1,1,1,6}
  112: {1,1,1,1,4}
  135: {2,2,2,3}
  136: {1,1,1,7}
  152: {1,1,1,8}
  160: {1,1,1,1,1,3}
		

Crossrefs

For distinct instead of equal the complement is A351294, counted by A239455.
For distinct instead of equal we have A351295, counted by A351293.
For run-sums instead of run-lengths we have A383100, zeros of A382877, distinct A382876.
Positions of 0 in A382857 (firsts A382878), by signature A382858 (distinct A382773).
For prime signature instead of prime indices we have A382914.
Partitions of this type are counted by A382915.
The complement is counted by A383013.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798.
A297770 counts distinct runs in binary expansion.
A164707 lists numbers whose binary form has equal runs of ones, distinct A328592.
A304442 counts partitions with equal run-sums, ranks A353833.
A329739 counts compositions with distinct run-lengths, ranks A351290.
A353744 ranks compositions with equal run-lengths, distinct A351596 (complement A351291).

Programs

  • Mathematica
    Select[Range[100], Select[Permutations[Join@@ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]=={}&]

A351596 Numbers k such that the k-th composition in standard order has all distinct run-lengths.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 19, 21, 23, 26, 28, 30, 31, 32, 35, 36, 39, 42, 47, 56, 60, 62, 63, 64, 67, 71, 73, 74, 79, 84, 85, 87, 95, 100, 106, 112, 119, 120, 122, 123, 124, 126, 127, 128, 131, 135, 136, 138, 143, 146, 159, 164, 168, 170, 171
Offset: 1

Views

Author

Gus Wiseman, Feb 24 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   7:    111  (1,1,1)
   8:   1000  (4)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
  16:  10000  (5)
  19:  10011  (3,1,1)
  21:  10101  (2,2,1)
  23:  10111  (2,1,1,1)
		

Crossrefs

The version using binary expansions is A044813.
The version for Heinz numbers and prime multiplicities is A130091.
These compositions are counted by A329739, normal A329740.
The version for runs instead of run-lengths is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.
Selected statistics of standard compositions (A066099, A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Length/@Split[stc[#]]&]

A351200 Number of patterns of length n with all distinct runs.

Original entry on oeis.org

1, 1, 3, 11, 53, 305, 2051, 15731, 135697, 1300869, 13726431, 158137851, 1975599321, 26607158781, 384347911211, 5928465081703, 97262304328573, 1691274884085061, 31073791192091251, 601539400910369671, 12238270940611270161, 261071590963047040241
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.

Examples

			The a(1) = 1 through a(3) = 11 patterns:
  (1)  (1,1)  (1,1,1)
       (1,2)  (1,1,2)
       (2,1)  (1,2,2)
              (1,2,3)
              (1,3,2)
              (2,1,1)
              (2,1,3)
              (2,2,1)
              (2,3,1)
              (3,1,2)
              (3,2,1)
The complement for n = 3 counts the two patterns (1,2,1) and (2,1,2).
		

Crossrefs

The version for run-lengths instead of runs is A351292.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns, complement A069321.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A060223 counts Lyndon patterns, necklaces A019536, aperiodic A296975.
A131689 counts patterns by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A345194 counts alternating patterns, up/down A350354.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351202 = permutations of prime factors.
- A351642 = word structures.
Row sums of A351640.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Split[#]&]],{n,0,6}]
  • PARI
    \\ here LahI is A111596 as row polynomials.
    LahI(n,y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
    S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p,i,y)*LahI(i,y))}
    R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
    seq(n)={my(q=S(n)); concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 12 2022

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 12 2022

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]

A351292 Number of patterns of length n with all distinct run-lengths.

Original entry on oeis.org

1, 1, 1, 5, 5, 9, 57, 61, 109, 161, 1265, 1317, 2469, 3577, 5785, 43901, 47165, 86337, 127665, 204853, 284197, 2280089, 2398505, 4469373, 6543453, 10570993, 14601745, 22502549, 159506453, 171281529, 314077353, 462623821, 742191037, 1031307185, 1580543969, 2141246229
Offset: 0

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.

Examples

			The a(1) = 1 through a(5) = 9 patterns:
  (1)  (1,1)  (1,1,1)  (1,1,1,1)  (1,1,1,1,1)
              (1,1,2)  (1,1,1,2)  (1,1,1,1,2)
              (1,2,2)  (1,2,2,2)  (1,1,1,2,2)
              (2,1,1)  (2,1,1,1)  (1,1,2,2,2)
              (2,2,1)  (2,2,2,1)  (1,2,2,2,2)
                                  (2,1,1,1,1)
                                  (2,2,1,1,1)
                                  (2,2,2,1,1)
                                  (2,2,2,2,1)
The a(6) = 57 patterns grouped by sum:
  111111  111112  111122  112221  111223  111233  112333  122333
          111211  111221  122211  111322  111332  113332  133322
          112111  122111  211122  112222  112223  122233  221333
          211111  221111  221112  211222  113222  133222  223331
                                  221113  122222  211333  333122
                                  222112  211133  222133  333221
                                  222211  221222  222331
                                  223111  222113  233311
                                  311122  222122  331222
                                  322111  222221  332221
                                          222311  333112
                                          233111  333211
                                          311222
                                          322211
                                          331112
                                          332111
		

Crossrefs

The version for runs instead of run-lengths is A351200.
A000670 counts patterns, ranked by A333217.
A005649 counts anti-run patterns, complement A069321.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A060223 counts Lyndon patterns, necklaces A019536, aperiodic A296975.
A131689 counts patterns by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A165413 counts distinct run-lengths in binary expansion, runs A297770.
A345194 counts alternating patterns, up/down A350354.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351202 = permutations of prime factors.
- A351638 = word structures.
Row sums of A350824.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Length/@Split[#]&]],{n,0,6}]
  • PARI
    P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
    R(u,k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
    seq(n)={my(u=P(n), c=poldegree(u[#u])); concat([1], sum(k=1, c, R(u, k)*sum(r=k, c, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 11 2022

Formula

From Andrew Howroyd, Feb 12 2022: (Start)
a(n) = Sum_{k=1..n} R(n,k)*(Sum_{r=k..n} binomial(r, k)*(-1)^(r-k)), where R(n,k) = Sum_{j=1..floor((sqrt(8*n+1)-1)/2)} k*(k-1)^(j-1) * j! * A008289(n,j).
G.f.: 1 + Sum_{r>=1} Sum_{k=1..r} R(k,x) * binomial(r, k)*(-1)^(r-k), where R(k,x) = Sum_{j>=1} k*(k-1)^(j-1) * j! * [y^j](Product_{k>=1} 1 + y*x^k).
(End)

Extensions

Terms a(10) and beyond from Andrew Howroyd, Feb 11 2022

A351018 Number of integer compositions of n with all distinct even-indexed parts and all distinct odd-indexed parts.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 27, 46, 77, 122, 191, 326, 497, 786, 1207, 1942, 2905, 4498, 6703, 10574, 15597, 23754, 35043, 52422, 78369, 115522, 169499, 248150, 360521, 532466, 768275, 1116126, 1606669, 2314426, 3301879, 4777078, 6772657, 9677138, 13688079, 19406214
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Comments

Also the number of binary words of length n starting with 1 and having all distinct runs (ranked by A175413, counted by A351016).

Examples

			The a(1) = 1 through a(6) = 18 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,1,2)  (4,1)    (4,2)
                     (2,1,1)  (1,1,3)  (5,1)
                              (1,2,2)  (1,1,4)
                              (2,2,1)  (1,2,3)
                              (3,1,1)  (1,3,2)
                                       (2,1,3)
                                       (2,3,1)
                                       (3,1,2)
                                       (3,2,1)
                                       (4,1,1)
                                       (1,1,2,2)
                                       (1,2,2,1)
                                       (2,1,1,2)
                                       (2,2,1,1)
		

Crossrefs

The case of partitions is A000726.
The version for run-lengths instead of runs is A032020.
These words are ranked by A175413.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A116608 counts compositions by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329738 counts compositions with equal run-lengths.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],#=={}||First[#]==1&&UnsameQ@@Split[#]&]],{n,0,10}]
  • PARI
    P(n)=prod(k=1, n, 1 + y*x^k + O(x*x^n));
    seq(n)=my(p=P(n)); Vec(sum(k=0, n, polcoef(p,k\2,y)*(k\2)!*polcoef(p,(k+1)\2,y)*((k+1)\2)!)) \\ Andrew Howroyd, Feb 11 2022

Formula

a(n>0) = A351016(n)/2.
G.f.: Sum_{k>=0} floor(k/2)! * ceiling(k/2)! * ([y^floor(k/2)] P(x,y)) * ([y^ceiling(k/2)] P(x,y)), where P(x,y) = Product_{k>=1} 1 + y*x^k. - Andrew Howroyd, Feb 11 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 11 2022

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]

A351201 Numbers whose multiset of prime factors has a permutation without all distinct runs.

Original entry on oeis.org

12, 18, 20, 28, 36, 44, 45, 48, 50, 52, 60, 63, 68, 72, 75, 76, 80, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 120, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 168, 171, 172, 175, 176, 180, 188, 192, 196, 198, 200, 204, 207, 208, 212, 216
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Examples

			The prime factors of 80 are {2,2,2,2,5} and the permutation (2,2,5,2,2) has runs (2,2), (5), and (2,2), which are not all distinct, so 80 is in the sequence. On the other hand, 24 has prime factors {2,2,2,3}, and all four permutations (3,2,2,2), (2,3,2,2), (2,2,3,2), (2,2,2,3) have distinct runs, so 24 is not in the sequence.
The terms and their prime indices begin:
     12: (2,1,1)         76: (8,1,1)        132: (5,2,1,1)
     18: (2,2,1)         80: (3,1,1,1,1)    140: (4,3,1,1)
     20: (3,1,1)         84: (4,2,1,1)      144: (2,2,1,1,1,1)
     28: (4,1,1)         90: (3,2,2,1)      147: (4,4,2)
     36: (2,2,1,1)       92: (9,1,1)        148: (12,1,1)
     44: (5,1,1)         98: (4,4,1)        150: (3,3,2,1)
     45: (3,2,2)         99: (5,2,2)        153: (7,2,2)
     48: (2,1,1,1,1)    100: (3,3,1,1)      156: (6,2,1,1)
     50: (3,3,1)        108: (2,2,2,1,1)    162: (2,2,2,2,1)
     52: (6,1,1)        112: (4,1,1,1,1)    164: (13,1,1)
     60: (3,2,1,1)      116: (10,1,1)       168: (4,2,1,1,1)
     63: (4,2,2)        117: (6,2,2)        171: (8,2,2)
     68: (7,1,1)        120: (3,2,1,1,1)    172: (14,1,1)
     72: (2,2,1,1,1)    124: (11,1,1)       175: (4,3,3)
     75: (3,3,2)        126: (4,2,2,1)      176: (5,1,1,1,1)
		

Crossrefs

The version for run-lengths instead of runs is A024619.
These permutations are counted by A351202.
These rank the partitions counted by A351203, complement A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A283353 counts normal multisets with a permutation w/o all distinct runs.
A297770 counts distinct runs in binary expansion.
A333489 ranks anti-runs, complement A348612.
A351014 counts distinct runs in standard compositions, firsts A351015.
A351291 ranks compositions without all distinct runs.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],!UnsameQ@@Split[#]&]!={}&]
Previous Showing 11-20 of 57 results. Next