cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A184155 The Matula-Goebel number of rooted trees having all leaves at the same level.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 49, 53, 57, 59, 63, 64, 67, 73, 81, 83, 85, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 159, 171, 189, 227, 241, 243, 256, 269, 277, 289, 307, 311, 331, 335, 343, 361, 365, 367, 371, 391, 393, 399, 419, 425, 431, 439, 441, 477
Offset: 1

Views

Author

Emeric Deutsch, Oct 07 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
The sequence is infinite.

Examples

			7 is in the sequence because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having all leaves at level 2.
2^m is in the sequence for each positive integer m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
From _Gus Wiseman_, Mar 30 2018: (Start)
Sequence of trees begins:
01 o
02 (o)
03 ((o))
04 (oo)
05 (((o)))
07 ((oo))
08 (ooo)
09 ((o)(o))
11 ((((o))))
16 (oooo)
17 (((oo)))
19 ((ooo))
21 ((o)(oo))
23 (((o)(o)))
25 (((o))((o)))
27 ((o)(o)(o))
31 (((((o)))))
(End)
		

References

  • F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
  • I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
  • I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
  • D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

Crossrefs

Programs

  • Maple
    with(numtheory): P := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(x*P(pi(n)))) else sort(P(r(n))+P(s(n))) end if end proc: A := {}: for n to 500 do if degree(numer(subs(x = 1/x, P(n)))) = 0 then A := `union`(A, {n}) else  end if end do: A;
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    dep[n_]:=If[n===1,0,1+Max@@dep/@primeMS[n]];
    rnkQ[n_]:=And[SameQ@@dep/@primeMS[n],And@@rnkQ/@primeMS[n]];
    Select[Range[2000],rnkQ] (* Gus Wiseman, Mar 30 2018 *)

Formula

In A184154 one constructs for each n the generating polynomial P(n,x) of the leaves of the rooted tree with Matula-Goebel number n, according to their levels. The Maple program finds those n (between 1 and 500) for which P(n,x) is a monomial.

A301368 Regular triangle where T(n,k) is the number of binary enriched p-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 4, 5, 3, 1, 3, 7, 12, 12, 6, 1, 3, 9, 19, 28, 25, 11, 1, 4, 14, 36, 65, 81, 63, 24, 1, 4, 16, 48, 107, 172, 193, 136, 47, 1, 5, 22, 75, 192, 369, 522, 522, 331, 103, 1, 5, 25, 96, 284, 643, 1108, 1420, 1292, 750, 214, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A binary enriched p-tree of weight n is either a single node of weight n, or an ordered pair of binary enriched p-trees with weakly decreasing weights summing to n.

Examples

			Triangle begins:
  1
  1   1
  1   1   1
  1   2   3   2
  1   2   4   5   3
  1   3   7  12  12   6
  1   3   9  19  28  25  11
  1   4  14  36  65  81  63  24
  1   4  16  48 107 172 193 136  47
  1   5  22  75 192 369 522 522 331 103
  ...
The T(6,3) = 7 binary enriched p-trees: ((41)1), ((32)1), (4(11)), ((31)2), ((22)2), (3(21)), ((21)3).
		

Crossrefs

Programs

  • Mathematica
    bintrees[n_]:=Prepend[Join@@Table[Tuples[bintrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]===2&]}],n];
    Table[Length[Select[bintrees[n],Count[#,_Integer,{-1}]===k&]],{n,13},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = y + sum(k=1, n\2, v[k]*v[n-k])); apply(p->Vecrev(p/y), v)}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018

A301344 Regular triangle where T(n,k) is the number of semi-binary rooted trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 4, 1, 0, 0, 1, 6, 4, 0, 0, 0, 1, 9, 11, 2, 0, 0, 0, 1, 12, 24, 9, 0, 0, 0, 0, 1, 16, 46, 32, 3, 0, 0, 0, 0, 1, 20, 80, 86, 20, 0, 0, 0, 0, 0, 1, 25, 130, 203, 86, 6, 0, 0, 0, 0, 0, 1, 30, 200, 423, 283, 46, 0, 0, 0, 0, 0, 0, 1, 36, 295, 816, 786, 234, 11, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A rooted tree is semi-binary if all outdegrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			Triangle begins:
1
1   0
1   1   0
1   2   0   0
1   4   1   0   0
1   6   4   0   0   0
1   9  11   2   0   0   0
1  12  24   9   0   0   0   0
1  16  46  32   3   0   0   0   0
1  20  80  86  20   0   0   0   0   0
1  25 130 203  86   6   0   0   0   0   0
The T(6,3) = 4 semi-binary rooted trees: ((o(oo))), (o((oo))), (o(o(o))), ((o)(oo)).
		

Crossrefs

Programs

  • Mathematica
    rbt[n_]:=rbt[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rbt/@c]]]/@Select[IntegerPartitions[n-1],Length[#]<=2&]];
    Table[Length[Select[rbt[n],Count[#,{},{-2}]===k&]],{n,15},{k,n}]

A298424 Matula-Goebel numbers of rooted trees in which all positive outdegrees are the same.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 16, 31, 32, 49, 64, 76, 86, 127, 128, 256, 301, 424, 454, 512, 709, 722, 886, 1024, 1532, 1589, 1849, 2048, 2096, 3101, 3986, 4096, 5381, 6418, 6859, 8192, 9761, 9952, 11236, 13766, 13951, 14554, 16384, 19049, 21884, 22463, 23512
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Examples

			Sequence of trees begins:
1   o
2   (o)
3   ((o))
4   (oo)
5   (((o)))
8   (ooo)
11  ((((o))))
14  (o(oo))
16  (oooo)
31  (((((o)))))
32  (ooooo)
49  ((oo)(oo))
64  (oooooo)
76  (oo(ooo))
86  (o(o(oo)))
127 ((((((o))))))
128 (ooooooo)
256 (oooooooo)
301 ((oo)(o(oo)))
424 (ooo(oooo))
454 (o((oo)(oo)))
512 (ooooooooo)
709 (((((((o)))))))
722 (o(ooo)(ooo))
886 (o(o(o(oo))))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    soQ[n_]:=Or[n===1,SameQ@@Length/@Cases[MGtree[n],{},{0,Infinity}]];
    Select[Range[1000],soQ]

A301343 Regular triangle where T(n,k) is the number of planted achiral (or generalized Bethe) trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 3, 2, 2, 1, 1, 0, 1, 3, 2, 2, 1, 1, 1, 0, 1, 4, 2, 4, 1, 2, 1, 1, 0, 1, 4, 3, 4, 1, 3, 1, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 0, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Examples

			Triangle begins:
1
1  0
1  1  0
1  1  1  0
1  2  1  1  0
1  2  1  1  1  0
1  3  2  2  1  1  0
1  3  2  2  1  1  1  0
1  4  2  4  1  2  1  1  0
1  4  3  4  1  3  1  1  1  0
1  5  3  6  2  4  1  2  1  1  0
The T(9,4) = 4 planted achiral trees: (((((oooo))))), ((((oo)(oo)))), (((oo))((oo))), ((o)(o)(o)(o)).
		

Crossrefs

Row sums are A003238. A version without the zeroes or first row is A214575.

Programs

  • Mathematica
    tri[n_,k_]:=If[k===1,1,If[k>=n,0,Sum[tri[n-k,d],{d,Divisors[k]}]]];
    Table[tri[n,k],{n,10},{k,n}]

Formula

T(n,1) = 1, T(n,k) = 0 if n <= k, otherwise T(n,k) = Sum_{d|k} T(n - k, d).

A301481 Number of unlabeled uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 2, 4, 12, 58, 2381, 14026281, 29284932065996445, 468863491068204425232922367150021, 1994324729204021501147398087008429476673379600542622915802043462326345
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size.

Examples

			Non-isomorphic representatives of the a(4) = 12 hypergraphs:
  {{1,2,3,4}}
  {{1,2},{3,4}}
  {{1},{2},{3},{4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    \\ see A301922 for U(n,k).
    a(n)={ if(n==0, 1, sum(k=1, n, U(n,k)-U(n-1,k))) } \\ Andrew Howroyd, Aug 10 2019

Extensions

Terms a(6) and beyond from Andrew Howroyd, Aug 09 2019

A303023 Number of anti-binary (no binary branchings) unlabeled rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 66, 139, 297, 642, 1404, 3097, 6888, 15428, 34770, 78785, 179397, 410264, 941935, 2170275, 5016604, 11630024, 27034824, 63000261, 147148341, 344419767, 807746487, 1897829065, 4466643367, 10529301944, 24858143953, 58769113863
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The a(6) = 8 rooted trees:
  (((((o)))))
  (((ooo)))
  ((oo(o)))
  (oo((o)))
  (o(o)(o))
  ((oooo))
  (ooo(o))
  (ooooo)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=1, 0, 1), `if`(i<1, 0,
          add(b(n-i*j, i-1, max(0, t-j))*binomial(a(i)+j-1, j), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n-1$2, 3)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    burt[n_]:=burt[n]=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[burt/@c]],{c,Select[IntegerPartitions[n-1],Length[#]!=2&]}]];
    Table[Length[burt[n]],{n,20}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 1, 0, 1], If[i < 1, 0, Sum[b[n-i*j, i-1, Max[0, t-j]]*Binomial[a[i]+j-1, j], {j, 0, n/i}]]];
    a[n_] := If[n < 2, n, b[n-1, n-1, 3]];
    Array[a, 50] (* Jean-François Alcover, May 16 2021, after Alois P. Heinz *)

Extensions

a(24)-a(34) from Alois P. Heinz, Aug 27 2018

A298533 Number of unlabeled rooted trees with n vertices such that every branch of the root has the same number of leaves.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 31, 64, 144, 333, 808, 2004, 5109, 13199, 34601, 91539, 244307, 656346, 1774212, 4820356, 13157591, 36060811, 99198470, 273790194, 757971757, 2104222594, 5856496542, 16338140048, 45678276507, 127964625782, 359155302204, 1009790944307
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			The a(5) = 8 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), (o((o))), ((o)(o)), (oo(o)), (oooo)
		

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    Table[Length[Select[rut[n],SameQ@@(Count[#,{},{0,Infinity}]&/@#)&]],{n,15}]
  • PARI
    \\ here R is A055277 as vector of polynomials
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    seq(n)={my(M=Mat(apply(p->Colrev(p,n), R(n-1)))); concat([1],sum(i=2, #M, EulerT(M[i,])))} \\ Andrew Howroyd, May 20 2018

Extensions

Terms a(19) and beyond from Andrew Howroyd, May 20 2018

A303024 Matula-Goebel numbers of anti-binary (no binary branchings) rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 16, 18, 19, 20, 24, 27, 30, 31, 32, 36, 37, 40, 44, 45, 48, 50, 53, 54, 60, 61, 64, 66, 67, 71, 72, 75, 76, 80, 81, 88, 89, 90, 96, 99, 100, 103, 108, 110, 113, 114, 120, 124, 125, 127, 128, 131, 132, 135, 144, 148, 150, 151, 152, 157
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The sequence of anti-binary rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   8: (ooo)
  11: ((((o))))
  12: (oo(o))
  16: (oooo)
  18: (o(o)(o))
  19: ((ooo))
  20: (oo((o)))
  24: (ooo(o))
  27: ((o)(o)(o))
  30: (o(o)((o)))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    abQ[n_]:=Or[n==1,And[PrimeOmega[n]!=2,And@@Cases[FactorInteger[n],{p_,_}:>abQ[PrimePi[p]]]]]
    Select[Range[100],abQ]

A303025 Number of series-reduced anti-binary (no unary or binary branchings) unlabeled rooted trees with n nodes.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 11, 17, 28, 46, 74, 123, 205, 341, 571, 964, 1629, 2764, 4707, 8040, 13766, 23639, 40681, 70163, 121256, 209960, 364168, 632694, 1100906, 1918375, 3347346, 5848271, 10229977, 17915018, 31407088, 55116661, 96818589, 170229939
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The a(10) = 7 rooted trees:
  (oo(oo(ooo)))
  (o(ooo)(ooo))
  (oo(oooooo))
  (ooo(ooooo))
  (oooo(oooo))
  (ooooo(ooo))
  (ooooooooo)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(i<1, 0,
          add(b(n-i*j, i-1, max(0, t-j))*binomial(a(i)+j-1, j), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n-1$2, 3)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    zurt[n_]:=zurt[n]=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[zurt/@c]],{c,Select[IntegerPartitions[n-1],Length[#]>2&]}]];
    Table[Length[zurt[n]],{n,20}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t == 0, 1, 0], If[i < 1, 0, Sum[b[n-i*j, i - 1, Max[0, t-j]]*Binomial[a[i]+j-1, j], {j, 0, n/i}]]];
    a[n_] :=  If[n < 2, n, b[n-1, n-1, 3]];
    Array[a, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)

Extensions

a(36)-a(42) from Alois P. Heinz, Aug 27 2018
Previous Showing 21-30 of 43 results. Next