cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A299284 Partial sums of A299283.

Original entry on oeis.org

1, 8, 30, 78, 162, 292, 478, 731, 1061, 1478, 1992, 2614, 3354, 4222, 5228, 6383, 7697, 9180, 10842, 12694, 14746, 17008, 19490, 22203, 25157, 28362, 31828, 35566, 39586, 43898, 48512, 53439, 58689, 64272, 70198, 76478, 83122, 90140, 97542, 105339, 113541
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299283.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1,1,-3,3,-1},{1,8,30,78,162,292,478},50] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>6.
(End)

A299285 Coordination sequence for "tea" 3D uniform tiling.

Original entry on oeis.org

1, 10, 33, 73, 128, 199, 285, 388, 506, 640, 789, 955, 1136, 1333, 1545, 1774, 2018, 2278, 2553, 2845, 3152, 3475, 3813, 4168, 4538, 4924, 5325, 5743, 6176, 6625, 7089, 7570, 8066, 8578, 9105, 9649, 10208, 10783, 11373, 11980, 12602, 13240, 13893
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

See A299286 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Cf. A056594.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,1,-2,1},{1,10,33,73,128,199,285},50] (* Harvey P. Dale, May 09 2022 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,-2,1,0,-1,2]^n*[1;10;33;73;128;199])[1,1] \\ Charles R Greathouse IV, Oct 18 2022

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 14*x^2 + 17*x^3 + 14*x^4 + 8*x^5 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6. (End)
[I suspect Barker's formulas only conjectures. - N. J. A. Sloane, Jun 12 2024]
If the above formulas are true, then a(n) = (31 - 3*(-1)^n + 126*n^2 + 4*A056594(n))/16 for n > 0. - Stefano Spezia, Jun 08 2024

A299286 Partial sums of A299285.

Original entry on oeis.org

1, 11, 44, 117, 245, 444, 729, 1117, 1623, 2263, 3052, 4007, 5143, 6476, 8021, 9795, 11813, 14091, 16644, 19489, 22641, 26116, 29929, 34097, 38635, 43559, 48884, 54627, 60803, 67428, 74517, 82087, 90153, 98731, 107836, 117485, 127693, 138476, 149849
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299285.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 14*x^2 + 17*x^3 + 14*x^4 + 8*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>6.
(End)

A299287 Coordination sequence for "tcd" 3D uniform tiling.

Original entry on oeis.org

1, 10, 33, 72, 126, 196, 281, 382, 498, 630, 777, 940, 1118, 1312, 1521, 1746, 1986, 2242, 2513, 2800, 3102, 3420, 3753, 4102, 4466, 4846, 5241, 5652, 6078, 6520, 6977, 7450, 7938, 8442, 8961, 9496, 10046, 10612, 11193, 11790, 12402, 13030, 13673, 14332
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

See A299288 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {1, 10, 33, 72, 126}, 50] (* Paolo Xausa, Aug 28 2024 *)
  • PARI
    Vec((1 + 8*x + 13*x^2 + 8*x^3 + x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

G.f.: (x^4 + 8*x^3 + 13*x^2 + 8*x + 1) / ((1 + x)*(1 - x)^3).
From Colin Barker, Feb 11 2018: (Start)
a(n) = (31*n^2 + 8) / 4 for even n>0.
a(n) = (31*n^2 + 9) / 4 for odd n>0.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. (End)
E.g.f.: ((8 + 31*x + 31*x^2)*cosh(x) + (9 + 31*x + 31*x^2)*sinh(x) - 4)/4. - Stefano Spezia, Jun 08 2024

A299288 Partial sums of A299287.

Original entry on oeis.org

1, 11, 44, 116, 242, 438, 719, 1101, 1599, 2229, 3006, 3946, 5064, 6376, 7897, 9643, 11629, 13871, 16384, 19184, 22286, 25706, 29459, 33561, 38027, 42873, 48114, 53766, 59844, 66364, 73341, 80791, 88729, 97171, 106132, 115628, 125674, 136286, 147479, 159269
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299287.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • PARI
    Vec((1 + 8*x + 13*x^2 + 8*x^3 + x^4) / ((1 - x)^4*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 13*x^2 + 8*x^3 + x^4) / ((1 - x)^4*(1 + x)).
a(n) = (62*n^3 + 93*n^2 + 82*n + 24) / 24 for n even.
a(n) = (62*n^3 + 93*n^2 + 82*n + 27) / 24 for n odd.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4.
(End)

A299289 Coordination sequence for "tsi" 3D uniform tiling.

Original entry on oeis.org

1, 8, 28, 60, 106, 164, 236, 320, 418, 528, 652, 788, 938, 1100, 1276, 1464, 1666, 1880, 2108, 2348, 2602, 2868, 3148, 3440, 3746, 4064, 4396, 4740, 5098, 5468, 5852, 6248, 6658, 7080, 7516, 7964, 8426, 8900, 9388, 9888, 10402, 10928
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #12.

Crossrefs

See A299290 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^3*(1 + x)).
a(n) = (13*n^2 + 4) / 2 for n>0 and even.
a(n) = (13*n^2 + 3) / 2 for n odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>4. (End)
Conjectured e.g.f.: ((4 + 13*x + 13*x^2)*cosh(x) + (3 + 13*x + 13*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jun 08 2024

A299290 Partial sums of A299289.

Original entry on oeis.org

1, 9, 37, 97, 203, 367, 603, 923, 1341, 1869, 2521, 3309, 4247, 5347, 6623, 8087, 9753, 11633, 13741, 16089, 18691, 21559, 24707, 28147, 31893, 35957, 40353, 45093, 50191, 55659, 61511, 67759, 74417, 81497, 89013, 96977, 105403, 114303, 123691
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299289.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 6*x + 12*x^2 + 6*x^3 + x^4) / ((1 - x)^4*(1 + x)).
a(n) = (12 + 34*n + 39*n^2 + 26*n^3) / 12 for n even.
a(n) = (9 + 34*n + 39*n^2 + 26*n^3) / 12 for n odd.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4.
(End)

A299291 Coordination sequence for "ubt" 3D uniform tiling.

Original entry on oeis.org

1, 5, 14, 29, 56, 85, 130, 181, 226, 299, 382, 445, 538, 635, 708, 845, 962, 1079, 1218, 1363, 1456, 1671, 1808, 1987, 2170, 2365, 2470, 2777, 2920, 3169, 3394, 3641, 3750, 4163, 4298, 4625, 4890, 5191, 5296, 5829, 5942, 6355, 6658, 7015, 7108, 7775, 7852, 8359, 8698, 9113, 9186
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #10.

Crossrefs

See A299292 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{-1,0,1,1,0,2,2,0,-2,-2,0,-1,-1,0,1,1},{1,5,14,29,56,85,130,181,226,299,382,445,538,635,708,845,962,1079,1218,1363,1456},60] (* Harvey P. Dale, Aug 20 2021 *)
  • PARI
    Vec((12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 + x)*(1 - x^3)*(1 - x^6)^2) + O(x^50)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 + x)*(1 - x^3)*(1 - x^6)^2). - N. J. A. Sloane, Feb 13 2018
a(n) = -a(n-1) + a(n-3) + a(n-4) + 2*a(n-6) + 2*a(n-7) - 2*a(n-9) - 2*a(n-10) - a(n-12) - a(n-13) + a(n-15) + a(n-16) for n>17. - Colin Barker, Feb 14 2018

A299292 Partial sums of A299291.

Original entry on oeis.org

1, 6, 20, 49, 105, 190, 320, 501, 727, 1026, 1408, 1853, 2391, 3026, 3734, 4579, 5541, 6620, 7838, 9201, 10657, 12328, 14136, 16123, 18293, 20658, 23128, 25905, 28825, 31994, 35388, 39029, 42779, 46942, 51240, 55865, 60755, 65946, 71242, 77071, 83013, 89368, 96026
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

Cf. A299291.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • PARI
    Vec((12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^50)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (12*x^20 + 16*x^19 - 20*x^17 - 27*x^16 - 8*x^15 + 3*x^14 + 46*x^13 + 115*x^12 + 176*x^11 + 212*x^10 + 226*x^9 + 228*x^8 + 214*x^7 + 170*x^6 + 122*x^5 + 79*x^4 + 42*x^3 + 19*x^2 + 6*x + 1) / ((1 - x^2)*(1 - x^3)*(1 - x^6)^2).
a(n) = a(n-2) + a(n-3) - a(n-5) + 2*a(n-6) - 2*a(n-8) - 2*a(n-9) + 2*a(n-11) - a(n-12) + a(n-14) + a(n-15) - a(n-17) for n>17. - Colin Barker, Feb 14 2018

A383737 Cluster series for percolation on polyominoid cells, with connections only between orthogonal cells ("hard" polyominoids).

Original entry on oeis.org

1, 8, 40, 168, 720, 2886, 11684, 46536, 181328
Offset: 0

Views

Author

Pontus von Brömssen, May 10 2025

Keywords

Comments

Equivalently, cluster series for percolation on polystick cells in 3 dimensions, with connections only between orthogonal cells.

Crossrefs

Rows 13 and 17 of A383735.
Cf. A299279 (coordination sequence for hard polyominoid cells), A365654, A365655, A383736.
Previous Showing 41-50 of 51 results. Next