A299288 Partial sums of A299287.
1, 11, 44, 116, 242, 438, 719, 1101, 1599, 2229, 3006, 3946, 5064, 6376, 7897, 9643, 11629, 13871, 16384, 19184, 22286, 25706, 29459, 33561, 38027, 42873, 48114, 53766, 59844, 66364, 73341, 80791, 88729, 97171, 106132, 115628, 125674, 136286, 147479, 159269
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Crossrefs
Cf. A299287.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Programs
-
PARI
Vec((1 + 8*x + 13*x^2 + 8*x^3 + x^4) / ((1 - x)^4*(1 + x)) + O(x^60)) \\ Colin Barker, Feb 11 2018
Formula
From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 13*x^2 + 8*x^3 + x^4) / ((1 - x)^4*(1 + x)).
a(n) = (62*n^3 + 93*n^2 + 82*n + 24) / 24 for n even.
a(n) = (62*n^3 + 93*n^2 + 82*n + 27) / 24 for n odd.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4.
(End)
Comments