cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 68 results. Next

A381870 Numbers whose prime indices have a unique multiset partition into sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 36, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 109, 113, 116, 117, 120, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2025

Keywords

Comments

First differs from A212166 in lacking 360.
First differs from A293511 in having 600.
Also numbers with a unique factorization into squarefree numbers with distinct sums of prime indices (A056239).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			For n = 600 the unique multiset partition is {{1},{1,3},{1,2,3}}. The unique factorization is 2*10*30.
		

Crossrefs

Without distinct block-sums we have A000961, ones in A050320.
More on set multipartitions: A089259, A116540, A270995, A296119, A318360.
For distinct blocks instead of sums we have A293511, ones in A050326.
These are the positions of ones in A381633, see A381634, A381806, A381990.
Normal multiset partitions of this type are counted by A381718, see A279785.
For constant instead of strict blocks we have A381991, ones in A381635.
A001055 counts multiset partitions of prime indices, strict A045778.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A265947 counts refinement-ordered pairs of integer partitions.
A317141 counts coarsenings of prime indices, refinements A300383.
A321469 counts factorizations with distinct sums of prime indices, ones A166684.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[100],Length[Select[sfacs[#],UnsameQ@@hwt/@#&]]==1&]

A381634 Number of multisets that can be obtained by taking the sum of each block of a set multipartition (multiset of sets) of the prime indices of n with distinct block-sums.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 0, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 1, 1, 2, 2, 0, 1, 5, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 3, 1, 2, 1, 0, 2, 5, 1, 1, 2, 4, 1, 0, 1, 2, 1, 1, 2, 5, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 06 2025

Keywords

Comments

First differs from A050326 at a(30) = 4, A050326(30) = 5.
First differs from A339742 at a(42) = 5, A339742(42) = 4.
First differs from A381441 at a(30) = 4, A381441(30) = 5.
First differs from A381633 at a(210) = 10, A381633(210) = 12.
Also the number of multisets that can be obtained by taking the sums of prime indices of each factor in a factorization of n into squarefree numbers > 1 with distinct sums of prime indices (A056239).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiset partition con be regarded as an arrow in the ranked poset of integer partitions. For example, we have {{1},{1,2},{1,3},{1,2,3}}: {1,1,1,1,2,2,3,3} -> {1,3,4,6}, or (33221111) -> (6431) (depending on notation).
Set multipartitions with distinct block-sums are generally not transitive. For example, we have arrows: {{1},{1,2}}: {1,1,2} -> {1,3} and {{1,3}}: {1,3} -> {4}, but there is no arrow {1,1,2} -> {4}.

Examples

			The prime indices of 120 are {1,1,2,3}, with 3 ways:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{2},{1,3}}
with block-sums: {1,6}, {3,4}, {1,2,4}, so a(120) = 3.
The prime indices of 210 are {1,2,3,4}, with 12 ways:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,3},{2,4}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{1},{2},{3},{4}}
with block-sums: {10}, {1,9}, {2,8}, {3,7}, {4,6}, {3,7}, {4,6}, {1,2,7}, {1,3,6}, {1,4,5}, {2,3,5}, {1,2,3,4}, of which 10 are distinct, so a(210) = 10.
		

Crossrefs

Without distinct block-sums we have A381078 (lower A381454), before sums A050320.
For distinct blocks instead of sums we have A381441, before sums A050326, see A358914.
Before taking sums we had A381633.
Positions of 0 are A381806.
Positions of 1 are A381870, superset of A293511.
More on set multipartitions with distinct sums: A279785, A381717, A381718.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A265947 counts refinement-ordered pairs of integer partitions.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    sfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[sfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[Union[Sort[hwt/@#]&/@Select[sfacs[n],UnsameQ@@hwt/@#&]]],{n,100}]

A381715 Number of multisets that can be obtained by taking the sum of each block of a multiset partition of the prime indices of n into distinct constant blocks.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2025

Keywords

Comments

First differs from A050361 at a(1728) = 7, A050361(1728) = 8.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 1728 are {1,1,1,1,1,1,2,2,2}, with multiset partitions into distinct constant blocks:
  {{2,2,2},{1,1,1,1,1,1}}
  {{1},{2,2,2},{1,1,1,1,1}}
  {{2},{2,2},{1,1,1,1,1,1}}
  {{1,1},{2,2,2},{1,1,1,1}}
  {{1},{2},{2,2},{1,1,1,1,1}}
  {{1},{1,1},{1,1,1},{2,2,2}}
  {{2},{1,1},{2,2},{1,1,1,1}}
  {{1},{2},{1,1},{2,2},{1,1,1}}
with sums:
  {6,6}
  {1,5,6}
  {2,4,6}
  {2,4,6}
  {1,2,4,5}
  {1,2,3,6}
  {2,2,4,4}
  {1,2,2,3,4}
of which 7 are distinct, so a(1728) = 7.
		

Crossrefs

Without distinct blocks (A000688) we have A381455, lower (A355731) A381453.
More on multiset partitions into constant blocks: A006171, A279784, A295935.
Positions of terms > 1 are A046099.
Before taking sums we had A050361.
For equal instead of distinct blocks we have A362421.
For strict instead of constant blocks we have A381441, before sums A050326.
For just distinct blocks we have A381452, before sums A045778.
For distinct sums we have A381716, before sums A381635, zeros A381636.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower).
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Union[Sort[Total/@#]&/@Select[mps[prix[n]],UnsameQ@@#&&And@@SameQ@@@#&]]],{n,100}]

A300486 Number of relatively prime or monic partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 18, 28, 35, 56, 64, 101, 120, 168, 210, 297, 348, 490, 583, 776, 946, 1255, 1482, 1952, 2335, 2981, 3581, 4565, 5387, 6842, 8119, 10086, 12013, 14863, 17527, 21637, 25525, 31083, 36695, 44583, 52256, 63261, 74171, 88932, 104303, 124754
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime).

Examples

			The a(6) = 8 relatively prime or monic partitions are (6), (51), (411), (321), (3111), (2211), (21111), (111111). Missing from this list are (42), (33), (222).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]],{n,20}]
  • PARI
    a(n)={(n > 1) + sumdiv(n, d, moebius(d)*numbpart(n/d))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n > 1) = 1 + A000837(n) = 1 + Sum_{d|n} mu(d) * A000041(n/d).

A301706 Number of rooted thrice-partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 91, 201, 422, 918, 1896, 4089, 8376, 17793, 36445, 76446, 155209, 324481, 655426, 1355220, 2741092, 5617505, 11291037, 23086423, 46227338, 93753196, 187754647, 378675055, 754695631, 1518414812, 3016719277, 6037006608, 11984729983
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n. A rooted thrice-partition of n is a choice of a rooted twice-partition of each part in a rooted partition of n.

Examples

			The a(5) = 9 rooted thrice-partitions:
((2)), ((11)), ((1)()), (()()()),
((1))(), (()())(), (())(()),
(())()(),
()()()().
The a(6) = 19 rooted thrice-partitions:
((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()),
((2))(), ((11))(), ((1)())(), (()()())(), ((1))(()), (()())(()),
((1))()(), (()())()(), (())(())(),
(())()()(),
()()()()().
		

Crossrefs

Programs

  • Mathematica
    twire[n_]:=twire[n]=Sum[Times@@PartitionsP/@(ptn-1),{ptn,IntegerPartitions[n-1]}];
    thrire[n_]:=Sum[Times@@twire/@ptn,{ptn,IntegerPartitions[n-1]}];
    Array[thrire,30]

A381436 Irregular triangle read by rows where row k is the section-sum partition of the prime indices of n.

Original entry on oeis.org

1, 2, 1, 1, 3, 3, 4, 1, 1, 1, 2, 2, 4, 5, 3, 1, 6, 5, 5, 1, 1, 1, 1, 7, 3, 2, 8, 4, 1, 6, 6, 9, 3, 1, 1, 3, 3, 7, 2, 2, 2, 5, 1, 10, 6, 11, 1, 1, 1, 1, 1, 7, 8, 7, 3, 3, 12, 9, 8, 4, 1, 1, 13, 7, 14, 6, 1, 5, 2, 10, 15, 3, 1, 1, 1, 4, 4, 4, 3, 9, 7, 1, 16, 3, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

Row-lengths are A051903.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The section-sum partition of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The prime indices of 24 are (2,1,1,1), with sections ((2,1),(1),(1)), so row 24 is (3,1,1).
Triangle begins:
   1: (empty)
   2: 1
   3: 2
   4: 1 1
   5: 3
   6: 3
   7: 4
   8: 1 1 1
   9: 2 2
  10: 4
  11: 5
  12: 3 1
  13: 6
  14: 5
  15: 5
  16: 1 1 1 1
		

Crossrefs

Row-lengths are A051903.
Row sums are A056239.
First part in each row is A066328.
Taking length instead of sum gives A238744, Heinz numbers A238745, conjugate A181819.
Partitions of this type are counted by A239455, complement A351293.
Heinz numbers are A381431 (union A381432, complement A381433, fixed A000961, A000005).
Rows appearing only once have Heinz numbers A381434, more than once A381435.
Last part in each row is A381437, counted by A381438.
The conjugate is A381440, Heinz numbers A048767 (union A351294, complement A351295).
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[egs[prix[n]],{n,100}]

A382075 Numbers whose prime indices can be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2025

Keywords

Comments

First differs from A212167 in having 3600.
First differs from A335433 in lacking 72.
First differs from A339741 in having 1080.
First differs from A345172 in lacking 72.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers that can be written as a product of squarefree numbers with distinct sums of prime indices.

Examples

			The prime indices of 1080 are {1,1,1,2,2,2,3}, and {{1},{2},{1,2},{1,2,3}} is a partition into a set of sets with distinct sums, so 1080 is in the sequence.
		

Crossrefs

Twice-partitions of this type are counted by A279785, see also A358914.
These are positions of terms > 0 in A381633, see A321469, A381078, A381634.
For constant instead of strict blocks see A381635, A381636, A381716.
Normal multiset partitions into sets with distinct sums are counted by A381718.
The complement is A381806, counted by A381990.
The case of a unique choice is A381870, counted by A382079, see A382078.
Partitions of this type are counted by A381992.
For distinct blocks instead of block-sums we have A382200, complement A293243.
MM-numbers of multiset partitions into sets with distinct sums are A382201.
Normal multisets of this type are counted by A382216, see also A382214.
A001055 counts multiset partitions of prime indices, strict A045778.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Select[Range[100],Length[Select[mps[prix[#]], And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]

A382200 Numbers that can be written as a product of distinct squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2025

Keywords

Comments

First differs from A339741 in having 1080.
First differs from A382075 in having 18000.
These are positions of positive terms in A050326, complement A293243.
Also numbers whose prime indices can be partitioned into distinct sets.
Differs from A212167, which does not include 18000 = 2^4*3^2*5^3, for example. - R. J. Mathar, Mar 23 2025

Examples

			The prime indices of 1080 are {1,1,1,2,2,2,3}, and {{1},{2},{1,2},{1,2,3}} is a partition into a set of sets, so 1080 is in the sequence.
We have 18000 = 2*5*6*10*30, so 18000 is in the sequence.
		

Crossrefs

Twice-partitions of this type are counted by A279785, see also A358914.
Normal multisets not of this type are counted by A292432, strong A292444.
The complement is A293243, counted by A050342.
The case of a unique choice is A293511.
MM-numbers of multiset partitions into distinct sets are A302494.
For distinct block-sums instead of blocks we have A382075, counted by A381992.
Partitions of this type are counted by A382077, complement A382078.
Normal multisets of this type are counted by A382214, strong A381996.
A001055 counts multiset partitions of prime indices, strict A045778.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    A:= Vector(N):
    A[1]:= 1:
    for n from 2 to N do
      if numtheory:-issqrfree(n) then
          S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
        fi;
    od:
    remove(t -> A[t]=0, [$1..N]); # Robert Israel, Apr 21 2025
  • Mathematica
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Select[Range[100],Length[sqfacs[#]]>0&]

A381440 Irregular triangle read by rows where row k is the Look-and-Say partition of the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

Row lengths are A066328.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The prime indices of 24 are (2,1,1,1), with Look-and-Say partition (3,1,1), so row 24 is (3,1,1).
The prime indices of 36 are (2,2,1,1), with Look-and-Say partition (2,2,2), so row 36 is (2,2,2).
Triangle begins:
   1: (empty)
   2: 1
   3: 1 1
   4: 2
   5: 1 1 1
   6: 1 1 1
   7: 1 1 1 1
   8: 3
   9: 2 2
  10: 1 1 1 1
  11: 1 1 1 1 1
  12: 2 1 1
  13: 1 1 1 1 1 1
  14: 1 1 1 1 1
  15: 1 1 1 1 1
  16: 4
  17: 1 1 1 1 1 1 1
  18: 2 2 1
  19: 1 1 1 1 1 1 1 1
		

Crossrefs

Heinz numbers are A048767 (union A351294, complement A351295, fixed A048768, A217605).
First part in each row is A051903, conjugate A066328.
Last part in each row is A051904, conjugate A381437 (counted by A381438).
Row sums are A056239.
Row lengths are A066328.
Partitions of this type are counted by A239455, complement A351293.
The conjugate is A381436, Heinz numbers A381431 (union A381432, complement A381433).
Rows appearing only once have Heinz numbers A381540, more than once A381541.
A000040 lists the primes.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    Table[Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>ConstantArray[k,PrimePi[p]]]]//Reverse,{n,30}]

A382076 Number of integer partitions of n whose run-sums are not all equal.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 6, 13, 15, 27, 37, 54, 64, 99, 130, 172, 220, 295, 372, 488, 615, 788, 997, 1253, 1547, 1955, 2431, 3005, 3706, 4563, 5586, 6840, 8332, 10139, 12305, 14879, 17933, 21635, 26010, 31181, 37314, 44581, 53156, 63259, 75163, 89124, 105553, 124752, 147210
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2025

Keywords

Comments

Also the number of integer partitions of n that cannot be partitioned into distinct constant multisets with a common sum. Multiset partitions of this type are ranked by A005117 /\ A326534 /\ A355743, while twice-partitions are counted by A382524, strict case of A279789.

Examples

			The partition (3,2,1,1,1) has runs ((3),(2),(1,1,1)) with sums (3,2,3) so is counted under a(8).
The a(3) = 1 through a(8) = 15 partitions:
  (21)  (31)  (32)    (42)     (43)      (53)
              (41)    (51)     (52)      (62)
              (221)   (321)    (61)      (71)
              (311)   (411)    (322)     (332)
              (2111)  (2211)   (331)     (431)
                      (21111)  (421)     (521)
                               (511)     (611)
                               (2221)    (3221)
                               (3211)    (3311)
                               (4111)    (4211)
                               (22111)   (5111)
                               (31111)   (22211)
                               (211111)  (32111)
                                         (311111)
                                         (2111111)
		

Crossrefs

The complement is counted by A304442, ranks A353833.
For distinct instead of equal block-sums we have A381717.
This is the strict case of A381993, see A381995, zeros A381871.
A050361 counts factorizations into distinct prime powers, see A381715.
A304405 counts partitions with weakly decreasing run-sums, ranks A357875.
A304406 counts partitions with weakly increasing run-sums, ranks A357861.
A304428 counts partitions with strictly decreasing run-sums, ranks A357862.
A304430 counts partitions with strictly increasing run-sums, ranks A357864.
A317141 counts coarsenings of prime indices, refinements A300383.
A326534 ranks multiset partitions with a common sum.
A353837 counts partitions with distinct run-sums.
A354584 lists run-sums of weakly increasing prime indices.
A355743 ranks multiset partitions into constant blocks.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!SameQ@@Total/@Split[#]&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025
Previous Showing 21-30 of 68 results. Next