cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A301686 Coordination sequence for node of type V1 in "krh" 2-D tiling (or net).

Original entry on oeis.org

1, 5, 7, 14, 17, 19, 28, 29, 31, 42, 41, 43, 56, 53, 55, 70, 65, 67, 84, 77, 79, 98, 89, 91, 112, 101, 103, 126, 113, 115, 140, 125, 127, 154, 137, 139, 168, 149, 151, 182, 161, 163, 196, 173, 175, 210, 185, 187, 224, 197, 199, 238, 209, 211, 252, 221, 223
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 2nd row, 1st tiling.

Crossrefs

Cf. A301688.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{0,0,2,0,0,-1},{1,5,7,14,17,19,28},100] (* Paolo Xausa, Nov 16 2023 *)
  • PARI
    \\ See Links section.

Formula

G.f.: -(-x^6-5*x^5-7*x^4-12*x^3-7*x^2-5*x-1)/(x^6-2*x^3+1). - N. J. A. Sloane, Mar 28 2018
a(n) = 2*(19*n + n*A099837(n+3) + 9*A049347(n+2)/2)/9 for n > 0. - Stefano Spezia, Jun 08 2024

Extensions

More terms from Rémy Sigrist, Mar 26 2018

A301688 Coordination sequence for node of type V2 in "krh" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 9, 12, 17, 22, 24, 30, 35, 36, 43, 48, 48, 56, 61, 60, 69, 74, 72, 82, 87, 84, 95, 100, 96, 108, 113, 108, 121, 126, 120, 134, 139, 132, 147, 152, 144, 160, 165, 156, 173, 178, 168, 186, 191, 180, 199, 204, 192, 212, 217, 204, 225, 230, 216, 238, 243
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 2nd row, 1st tiling.

Crossrefs

Cf. A301686.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{0,0,2,0,0,-1},{1,4,9,12,17,22,24},100] (* Paolo Xausa, Nov 16 2023 *)
  • PARI
    \\ See Links section.

Formula

G.f.: -(-x^6-4*x^5-9*x^4-10*x^3-9*x^2-4*x-1)/(x^6-2*x^3+1). - N. J. A. Sloane, Mar 28 2018
a(n) = 2*(19*n - n*A099837(n+3)/2 - 3*A049347(n+2)/2)/9 for n > 0. - Stefano Spezia, Jun 08 2024

Extensions

More terms from Rémy Sigrist, Mar 26 2018

A301690 Coordination sequence for node of type V1 in "krf" 2-D tiling (or net).

Original entry on oeis.org

1, 6, 6, 9, 12, 18, 24, 21, 24, 30, 36, 42, 36, 39, 48, 54, 60, 51, 54, 66, 72, 78, 66, 69, 84, 90, 96, 81, 84, 102, 108, 114, 96, 99, 120, 126, 132, 111, 114, 138, 144, 150, 126, 129, 156, 162, 168, 141, 144, 174, 180, 186, 156, 159, 192, 198, 204, 171, 174, 210, 216, 222, 186, 189, 228, 234, 240
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 2nd row, 1st tiling.

Crossrefs

Cf. A301692.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{1,6,6,9,12,18,24,21,24,30,36},100] (* Paolo Xausa, Nov 16 2023 *)

Formula

G.f.: -(-x^10-6*x^9-6*x^8-9*x^7-12*x^6-16*x^5-12*x^4-9*x^3-6*x^2-6*x-1)/(x^10-2*x^5+1). - N. J. A. Sloane, Mar 29 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301692 Coordination sequence for node of type V2 in "krf" 2-D tiling (or net).

Original entry on oeis.org

1, 4, 7, 9, 12, 16, 21, 25, 26, 29, 34, 38, 41, 42, 46, 52, 55, 57, 58, 63, 70, 72, 73, 74, 80, 88, 89, 89, 90, 97, 106, 106, 105, 106, 114, 124, 123, 121, 122, 131, 142, 140, 137, 138, 148, 160, 157, 153, 154, 165, 178, 174, 169, 170, 182, 196, 191, 185, 186, 199, 214, 208, 201, 202, 216, 232, 225
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 2nd row, 1st tiling.

Crossrefs

Cf. A301690.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,2,0,0,0,0,-1},{1,4,7,9,12,16,21,25,26,29,34,38,41,42},100] (* Paolo Xausa, Nov 16 2023 *)

Formula

G.f.: -(x^13+2*x^12-3*x^10-5*x^9-8*x^8-11*x^7-13*x^6-14*x^5-12*x^4-9*x^3-7*x^2-4*x-1)/(x^10-2*x^5+1). - N. J. A. Sloane, Mar 29 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301694 Expansion of (1 + 5*x + 4*x^2 + 5*x^3 + x^4)/((1 - x)*(1 - x^3)).

Original entry on oeis.org

1, 6, 10, 16, 22, 26, 32, 38, 42, 48, 54, 58, 64, 70, 74, 80, 86, 90, 96, 102, 106, 112, 118, 122, 128, 134, 138, 144, 150, 154, 160, 166, 170, 176, 182, 186, 192, 198, 202, 208, 214, 218, 224, 230, 234, 240, 246, 250, 256, 262, 266, 272, 278, 282, 288, 294
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Appears to be coordination sequence for node of type V1 in "krd" 2-D tiling (or net). This should be easy to prove by the coloring book method (see link).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 2nd tiling.

Crossrefs

Cf. A219529.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Magma
    I:=[1,6,10,16,22]; [n le 5 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Mar 26 2018
    
  • Magma
    [n eq 0 select 1 else 6*n-2*Floor((n+1)/3): n in [0..60]]; // Bruno Berselli, Mar 26 2018
  • Mathematica
    CoefficientList[Series[(x^4 + 5 x^3 + 4 x^2 + 5 x + 1) / ((1 - x) (1 - x^3)), {x, 0, 80}], x] (* Vincenzo Librandi, Mar 26 2018 *)
  • PARI
    lista(nn) = {x='x+O('x^nn); Vec((x^4+5*x^3+4*x^2+5*x+1)/((1-x)*(1-x^3)))} \\ Altug Alkan, Mar 26 2018
    

Formula

G.f.: (1 + 5*x + 4*x^2 + 5*x^3 + x^4)/((1 - x)*(1 - x^3)).
a(n) = 6*n - 2*floor((n + 1)/3) for n>0, a(0)=1. - Bruno Berselli, Mar 26 2018

A301697 Coordination sequence for node of type V2 in "krj" 2-D tiling (or net).

Original entry on oeis.org

1, 5, 10, 16, 22, 27, 32, 37, 42, 48, 54, 59, 64, 69, 74, 80, 86, 91, 96, 101, 106, 112, 118, 123, 128, 133, 138, 144, 150, 155, 160, 165, 170, 176, 182, 187, 192, 197, 202, 208, 214, 219, 224, 229, 234, 240, 246, 251, 256, 261, 266, 272, 278, 283, 288, 293, 298, 304, 310, 315, 320, 325, 330, 336
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 2nd row, 3rd tiling.

Crossrefs

Cf. A219529.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{2,-2,2,-2,2,-1},{1,5,10,16,22,27,32},100] (* Paolo Xausa, Nov 16 2023 *)

Formula

G.f.: -(-x^6 -3*x^5 -2*x^4 -4*x^3 -2*x^2 -3*x -1) /(x^6 -2*x^5 +2*x^4 -2*x^3 +2*x^2 -2*x +1) = 1 + x*(5+6*x^2+5*x^4) / ( (x^2-x+1) *(1+x+x^2) *(x-1)^2 ). - N. J. A. Sloane, Mar 29 2018
Equivalent conjecture: 6*a(n) = 32*n -3*A010892(n-1) + A049347(n-1) for n>0. - R. J. Mathar, Nov 26 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301708 Coordination sequence for node of type V1 in "krc" 2-D tiling (or net).

Original entry on oeis.org

1, 6, 11, 16, 22, 28, 33, 38, 44, 50, 55, 60, 66, 72, 77, 82, 88, 94, 99, 104, 110, 116, 121, 126, 132, 138, 143, 148, 154, 160, 165, 170, 176, 182, 187, 192, 198, 204, 209, 214, 220, 226, 231, 236, 242, 248, 253, 258, 264, 270, 275, 280, 286, 292, 297, 302
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 1st tiling.

Crossrefs

Cf. A301710.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{2,-2,2,-1},{1,6,11,16,22},100] (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    \\ See Links section.

Formula

G.f. = (x^4+4*x^3+x^2+4*x+1)/((x^2+1)*(x-1)^2); for n>0, a(2*t)=11*t, a(4*t+1)=22*t+6, a(4*t+3)=22*t+16. These should be easy to prove by the coloring book method (see link).
Conjecture: a(n) = (i*((-i)^n - i^n) + 22*n) / 4 where i=sqrt(-1). - Colin Barker, Apr 07 2018
E.g.f.: (2 + 11*exp(x)*x + sin(x))/2. - Stefano Spezia, Jun 08 2024

Extensions

More terms from Davide M. Proserpio, Mar 28 2018

A301710 Coordination sequence for node of type V2 in "krc" 2-D tiling (or net).

Original entry on oeis.org

1, 5, 11, 17, 22, 27, 33, 39, 44, 49, 55, 61, 66, 71, 77, 83, 88, 93, 99, 105, 110, 115, 121, 127, 132, 137, 143, 149, 154, 159, 165, 171, 176, 181, 187, 193, 198, 203, 209, 215, 220, 225, 231, 237, 242, 247, 253, 259, 264, 269, 275, 281, 286, 291, 297, 303
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 1st row, 1st tiling.

Crossrefs

Cf. A301708.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{2,-2,2,-1},{1,5,11,17,22},100] (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    See Links section.

Formula

G.f.: (x^4+3*x^3+3*x^2+3*x+1)/((x^2+1)*(x-1)^2); for n>0, a(2*t)=11*t, a(4*t+1)=22*t+5, a(4*t+3)=22*t+17. These should be easy to prove by the coloring book method (see link).
a(n) = ((-i)^(1+n) + i^(1+n) + 22*n) / 4 for n>0, where i=sqrt(-1) (conjectured). - Colin Barker, Apr 07 2018

Extensions

More terms from Davide M. Proserpio, Mar 28 2018

A301712 Coordination sequence for node of type V1 in "usm" 2-D tiling (or net).

Original entry on oeis.org

1, 5, 10, 16, 22, 27, 33, 38, 43, 49, 53, 59, 65, 70, 77, 81, 86, 92, 96, 103, 108, 113, 120, 124, 130, 135, 139, 146, 151, 157, 163, 167, 173, 178, 183, 189, 194, 200, 206, 211, 216, 221, 226, 232, 238, 243, 249, 254, 259, 265, 269, 275, 281, 286, 293, 297, 302, 308, 312, 319, 324, 329, 336, 340
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 2nd row, 2nd tiling.

Crossrefs

Cf. A301714.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,-1,2,-1,0,0,1,-1},{1,5,10,16,22,27,33,38,43,49,53},100] (* Paolo Xausa, Nov 16 2023 *)

Formula

G.f.: -(-x^10-4*x^9-5*x^8-6*x^7-7*x^6-8*x^5-7*x^4-6*x^3-5*x^2-4*x-1)/(x^10-x^9+x^6-2*x^5+x^4-x+1). - N. J. A. Sloane, Mar 29 2018
Equivalent conjecture: 5*a(n) = 27*n -b(n) -5*A014017(n-2) for n>0, where b(n) = 2,-1,1,-2,0 (5-periodic) for n>=1. - R. J. Mathar, Mar 30 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018

A301714 Coordination sequence for node of type V2 in "usm" 2-D tiling (or net).

Original entry on oeis.org

1, 5, 12, 16, 21, 28, 31, 38, 44, 47, 56, 59, 64, 72, 73, 82, 87, 90, 100, 101, 108, 115, 116, 126, 129, 134, 143, 144, 152, 157, 160, 169, 172, 178, 185, 188, 195, 200, 204, 211, 216, 221, 228, 232, 237, 244, 247, 254, 260, 263, 272, 275, 280, 288, 289, 298, 303, 306, 316, 317, 324, 331, 332, 342
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 30 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 67, 2nd row, 2nd tiling.

Crossrefs

Cf. A301712.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,-1,2,-1,0,0,1,-1},{1,5,12,16,21,28,31,38,44,47,56},100] (* Paolo Xausa, Nov 16 2023 *)

Formula

G.f.: -(-x^10-4*x^9-7*x^8-4*x^7-6*x^6-10*x^5-6*x^4-4*x^3-7*x^2-4*x-1)/(x^10-x^9+x^6-\2*x^5+x^4-x+1). - N. J. A. Sloane, Mar 29 2018

Extensions

a(11)-a(100) from Davide M. Proserpio, Mar 28 2018
Previous Showing 21-30 of 37 results. Next