cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A302497 Powers of primes of squarefree index.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 11, 13, 16, 17, 25, 27, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 81, 83, 101, 109, 113, 121, 125, 127, 128, 137, 139, 149, 157, 163, 167, 169, 179, 181, 191, 199, 211, 233, 241, 243, 256, 257, 269, 271, 277, 283, 289, 293, 313, 317, 331
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			49 is not in the sequence because 49 = prime(4)^2 but 4 is not squarefree.
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of constant set multisystems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
08: {{},{},{}}
09: {{1},{1}}
11: {{3}}
13: {{1,2}}
16: {{},{},{},{}}
17: {{4}}
25: {{2},{2}}
27: {{1},{1},{1}}
29: {{1,3}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
59: {{7}}
64: {{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,PrimePowerQ[#]&&And@@SquareFreeQ/@PrimePi/@FactorInteger[#][[All,1]]]&]
  • PARI
    is(n) = if(n==1, return(1), my(x=isprimepower(n)); if(x > 0, if(issquarefree(primepi(ceil(n^(1/x)))), return(1)))); 0 \\ Felix Fröhlich, Apr 10 2018

A302534 Squarefree numbers whose prime indices are also squarefree and have disjoint prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 17, 22, 26, 29, 30, 31, 33, 34, 41, 43, 47, 51, 55, 58, 59, 62, 66, 67, 73, 79, 82, 83, 85, 86, 93, 94, 101, 102, 109, 110, 113, 118, 123, 127, 134, 137, 139, 141, 143, 145, 146, 149, 155, 157, 158, 163, 165, 166, 167, 170, 177
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
13: {{1,2}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
26: {{},{1,2}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
51: {{1},{4}}
55: {{2},{3}}
58: {{},{1,3}}
59: {{7}}
62: {{},{5}}
66: {{},{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&UnsameQ@@Join@@primeMS/@primeMS[#]&]

A302539 Squarefree numbers whose prime indices other than 1 are prime numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 15, 17, 22, 30, 31, 33, 34, 41, 51, 55, 59, 62, 66, 67, 82, 83, 85, 93, 102, 109, 110, 118, 123, 127, 134, 155, 157, 165, 166, 170, 177, 179, 186, 187, 191, 201, 205, 211, 218, 241, 246, 249, 254, 255, 277, 283, 295, 310, 314, 327, 330
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
15: {{1},{2}}
17: {{4}}
22: {{},{3}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
41: {{6}}
51: {{1},{4}}
55: {{2},{3}}
59: {{7}}
62: {{},{5}}
66: {{},{1},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],SquareFreeQ[#]&&And@@(PrimeQ/@DeleteCases[primeMS[#],1])&]
  • PARI
    ok(n)={issquarefree(n) && !#select(p->p>2 && !isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Sum_{n>=1} 1/a(n) = (3/2) * Product_{p in A006450} (1 + 1/p) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A302591 One, powers of 2, and prime numbers of squarefree index.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 13, 16, 17, 29, 31, 32, 41, 43, 47, 59, 64, 67, 73, 79, 83, 101, 109, 113, 127, 128, 137, 139, 149, 157, 163, 167, 179, 181, 191, 199, 211, 233, 241, 256, 257, 269, 271, 277, 283, 293, 313, 317, 331, 347, 349, 353, 367, 373, 389, 397, 401
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
08: {{},{},{}}
11: {{3}}
13: {{1,2}}
16: {{},{},{},{}}
17: {{4}}
29: {{1,3}}
31: {{5}}
32: {{},{},{},{},{}}
41: {{6}}
43: {{1,4}}
47: {{2,3}}
59: {{7}}
64: {{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],Or[#===1,Union[primeMS[#]]==={1},PrimeQ[#]&&SquareFreeQ[PrimePi[#]]]&]
  • PARI
    ok(n)={n>>valuation(n,2) == 1 || (isprime(n) && issquarefree(primepi(n)))} \\ Andrew Howroyd, Aug 26 2018

Formula

Union of A000079 and A302491. - Andrew Howroyd, Aug 26 2018

A302592 One, powers of 2, and prime numbers of prime index.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 16, 17, 31, 32, 41, 59, 64, 67, 83, 109, 127, 128, 157, 179, 191, 211, 241, 256, 277, 283, 331, 353, 367, 401, 431, 461, 509, 512, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, 1024, 1031, 1063, 1087, 1153, 1171
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set multisystems.
001: {}
002: {{}}
003: {{1}}
004: {{},{}}
005: {{2}}
008: {{},{},{}}
011: {{3}}
016: {{},{},{},{}}
017: {{4}}
031: {{5}}
032: {{},{},{},{},{}}
041: {{6}}
059: {{7}}
064: {{},{},{},{},{},{}}
067: {{8}}
083: {{9}}
109: {{10}}
127: {{11}}
128: {{},{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Or[#===1,Union[primeMS[#]]==={1},PrimeQ[#]&&PrimeQ[PrimePi[#]]]&]
  • PARI
    ok(n)={n>>valuation(n,2) == 1 || (isprime(n) && isprime(primepi(n)))} \\ Andrew Howroyd, Aug 26 2018

Formula

Union of A000079 and A006450. - Andrew Howroyd, Aug 26 2018

A318485 Number of p-trees of weight 2n + 1 in which all outdegrees are odd.

Original entry on oeis.org

1, 1, 2, 5, 13, 37, 107, 336, 1037, 3367, 10924, 36438, 121045, 412789, 1398168, 4831708, 16636297, 58084208, 202101971, 712709423, 2502000811, 8880033929, 31428410158, 112199775788, 399383181020, 1433385148187, 5128572792587, 18481258241133
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2018

Keywords

Comments

A p-tree of weight n with odd outdegrees is either a single node (if n = 1) or a finite odd-length sequence of at least 3 p-trees with odd outdegrees whose weights are weakly decreasing and sum to n.

Examples

			The a(4) = 13 p-trees of weight 9 with odd outdegrees:
  ((((ooo)oo)oo)oo)
  (((ooo)(ooo)o)oo)
  (((ooo)oo)(ooo)o)
  ((ooo)(ooo)(ooo))
  (((ooooo)oo)oo)
  (((ooo)oooo)oo)
  ((ooooo)(ooo)o)
  (((ooo)oo)oooo)
  ((ooo)(ooo)ooo)
  ((ooooooo)oo)
  ((ooooo)oooo)
  ((ooo)oooooo)
  (ooooooooo)
		

Crossrefs

Programs

  • Mathematica
    b[n_]:=b[n]=If[n>1,0,1]+Sum[Times@@b/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Table[b[n],{n,1,20,2}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 27 2018

A357458 First differences of A325033 = "Sum of sums of the multiset of prime indices of each prime index of n.".

Original entry on oeis.org

0, 1, -1, 2, -1, 1, -2, 2, 0, 1, -2, 2, -1, 1, -3, 4, -2, 1, -1, 1, 0, 1, -3, 3, -1, 0, -1, 2, -1, 2, -5, 4, 0, 0, -2, 2, -1, 1, -2, 4, -3, 2, -2, 1, 0, 1, -4, 3, 0, 1, -2, 1, -1, 2, -3, 2, 0, 3, -4, 2, 0, -1, -4, 5, -1, 4, -4, 1, -1, 1, -3, 4, -2, 1, -2, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			We have A325033(5) - A325033(4) = 2 - 0, so a(4) = 2.
		

Crossrefs

The partial sums are A325033, which has row-products A325032.
The version for standard compositions is A357187.
A000961 lists prime powers.
A003963 multiples prime indices.
A005117 lists squarefree numbers.
A056239 adds up prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Differences[Table[Plus@@Join@@primeMS/@primeMS[n],{n,100}]]

Formula

a(n) = A325033(n + 1) - A325033(n).

A302594 Numbers whose prime indices other than 1 are equal prime numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 16, 17, 18, 20, 22, 24, 25, 27, 31, 32, 34, 36, 40, 41, 44, 48, 50, 54, 59, 62, 64, 67, 68, 72, 80, 81, 82, 83, 88, 96, 100, 108, 109, 118, 121, 124, 125, 127, 128, 134, 136, 144, 157, 160, 162, 164, 166, 176, 179, 191, 192
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
08: {{},{},{}}
09: {{1},{1}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
16: {{},{},{},{}}
17: {{4}}
18: {{},{1},{1}}
20: {{},{},{2}}
22: {{},{3}}
24: {{},{},{},{1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[400],MatchQ[Union[DeleteCases[primeMS[#],1]],{_?PrimeQ}|{}]&]

A302597 Squarefree numbers whose prime indices are powers of a common prime number.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 17, 19, 21, 22, 23, 31, 34, 38, 41, 42, 46, 53, 57, 59, 62, 67, 82, 83, 97, 103, 106, 109, 114, 115, 118, 127, 131, 133, 134, 157, 159, 166, 179, 191, 194, 206, 211, 218, 227, 230, 241, 254, 262, 266, 277, 283, 311, 314, 318, 331
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
10: {{},{2}}
11: {{3}}
14: {{},{1,1}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
31: {{5}}
34: {{},{4}}
38: {{},{1,1,1}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Join@@primeMS/@primeMS[#]&&SquareFreeQ[#]&]

A302600 1, 2, prime numbers of prime index, and prime numbers of prime index times 2.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 17, 22, 31, 34, 41, 59, 62, 67, 82, 83, 109, 118, 127, 134, 157, 166, 179, 191, 211, 218, 241, 254, 277, 283, 314, 331, 353, 358, 367, 382, 401, 422, 431, 461, 482, 509, 547, 554, 563, 566, 587, 599, 617, 662, 706, 709, 734, 739, 773
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
Also squarefree numbers whose prime indices other than 1 are equal prime numbers.

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
01: {}
02: {{}}
03: {{1}}
05: {{2}}
06: {{},{1}}
10: {{},{2}}
11: {{3}}
17: {{4}}
22: {{},{3}}
31: {{5}}
34: {{},{4}}
41: {{6}}
59: {{7}}
62: {{},{5}}
67: {{8}}
82: {{},{6}}
83: {{9}}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],SquareFreeQ[#]&&SameQ@@DeleteCases[primeMS[#],1]&&And@@PrimeQ/@DeleteCases[primeMS[#],1]&]
Previous Showing 21-30 of 32 results. Next