cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 75 results. Next

A320439 Number of factorizations of n into factors > 1 where each factor's prime indices are relatively prime. Number of factorizations of n using elements of A289509.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 1, 5, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 2, 0, 7, 1, 1, 1, 3, 0, 1, 0, 4, 0, 1, 0, 2, 1, 1, 0, 7, 0, 1, 1, 2, 0, 1, 1, 4, 0, 1, 0, 5, 0, 1, 0, 11, 0, 2, 0, 2, 1, 2, 0, 6, 0, 1, 1, 2, 1, 1, 0, 7, 0, 1, 0, 3, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2019

Keywords

Comments

Also the number of multiset partitions of the multiset of prime indices of n using multisets each of which is relatively prime.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Two or more numbers are relatively prime if they have no common divisor > 1. A single number is not considered to be relatively prime unless it is equal to 1.

Examples

			The a(72) = 6 factorizations are (2*2*18), (2*6*6), (2*36), (4*18), (6*12), (72).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facsrp[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[facsrp[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],GCD@@primeMS[#]==1&]}]];
    Table[Length[facsrp[n]],{n,100}]
  • PARI
    A320439(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d<=m)&&(1==gcd(apply(x->primepi(x), factor(d)[, 1]))), s += A320439(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2021

A327515 Number of steps to reach a fixed point starting with n and repeatedly taking the quotient by the maximum divisor that is 1, 2, or a nonprime number whose prime indices are pairwise coprime (A327512, A327514).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 19 2019

Keywords

Comments

Positions of zeros are A289509.
First term > 1 is a(225) = 2.
First zero not in A318978 is a(17719) = 0.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Numbers that are 1, 2, or a nonprime number whose prime indices are pairwise coprime are listed in A302696.

Examples

			We have 50625 -> 3375 -> 225 ->  15 -> 1, so a(50625) = 4.
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[FixedPointList[#/Max[Select[Divisors[#],#==1||CoprimeQ@@primeMS[#]&]]&,n]]-2,{n,100}]
  • PARI
    isA302696(n) = if(isprimepower(n), !(n%2), if(!issquarefree(n>>valuation(n, 2)), 0, my(pis=apply(primepi, factor(n)[, 1])); (lcm(pis)==factorback(pis))));
    A327512(n) = vecmax(select(isA302696, divisors(n)));
    A327515(n) = for(k=0,oo,my(nextn=n/A327512(n)); if(nextn==n,return(k)); n = nextn); \\ Antti Karttunen, Jan 28 2025

Formula

a(15^n) = n.

Extensions

Data section extended to a(105) and secondary offset added by Antti Karttunen, Jan 28 2025

A327695 Number of non-constant factorizations of n whose distinct factors are pairwise coprime.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 2, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 4, 0, 1, 1, 2, 0, 4, 0, 2, 2, 1, 0, 3, 0, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 6, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 4, 0, 1, 2, 2, 1, 4, 0, 3, 0, 1, 0, 6, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 22 2019

Keywords

Examples

			The factorizations of 6, 12, 30, 48, 60, 180, and 210:
  (2*3)  (3*4)    (5*6)    (3*16)       (3*20)     (4*45)       (3*70)
         (2*2*3)  (2*15)   (3*4*4)      (4*15)     (5*36)       (5*42)
                  (3*10)   (2*2*2*2*3)  (5*12)     (9*20)       (6*35)
                  (2*3*5)               (3*4*5)    (4*5*9)      (7*30)
                                        (2*2*15)   (5*6*6)      (10*21)
                                        (2*2*3*5)  (2*2*45)     (14*15)
                                                   (3*3*20)     (2*105)
                                                   (2*2*5*9)    (5*6*7)
                                                   (3*3*4*5)    (2*3*35)
                                                   (2*2*3*3*5)  (2*5*21)
                                                                (2*7*15)
                                                                (3*5*14)
                                                                (3*7*10)
                                                                (2*3*5*7)
		

Crossrefs

Factorizations that are constant or whose distinct parts are pairwise coprime are counted by A327399.
Numbers with pairwise coprime distinct prime indices are A304711.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],CoprimeQ@@Union[#]&]],{n,100}]

Formula

a(n) = A327399(n) - A089723(n).

A335241 Numbers whose prime indices are not pairwise coprime, where a singleton is not coprime unless it is {1}.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 18, 19, 21, 23, 25, 27, 29, 31, 36, 37, 39, 41, 42, 43, 45, 47, 49, 50, 53, 54, 57, 59, 61, 63, 65, 67, 71, 72, 73, 75, 78, 79, 81, 83, 84, 87, 89, 90, 91, 97, 98, 99, 100, 101, 103, 105, 107, 108, 109, 111, 113, 114, 115, 117, 121
Offset: 1

Views

Author

Gus Wiseman, May 30 2020

Keywords

Comments

We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}          31: {11}          61: {18}
    3: {2}         36: {1,1,2,2}     63: {2,2,4}
    5: {3}         37: {12}          65: {3,6}
    7: {4}         39: {2,6}         67: {19}
    9: {2,2}       41: {13}          71: {20}
   11: {5}         42: {1,2,4}       72: {1,1,1,2,2}
   13: {6}         43: {14}          73: {21}
   17: {7}         45: {2,2,3}       75: {2,3,3}
   18: {1,2,2}     47: {15}          78: {1,2,6}
   19: {8}         49: {4,4}         79: {22}
   21: {2,4}       50: {1,3,3}       81: {2,2,2,2}
   23: {9}         53: {16}          83: {23}
   25: {3,3}       54: {1,2,2,2}     84: {1,1,2,4}
   27: {2,2,2}     57: {2,8}         87: {2,10}
   29: {10}        59: {17}          89: {24}
		

Crossrefs

The complement is A302696.
The version for relatively prime instead of coprime is A318978.
The version for standard compositions is A335239.
These are the Heinz numbers of the partitions counted by A335240.
Singleton or pairwise coprime partitions are counted by A051424.
Singleton or pairwise coprime sets are ranked by A087087.
Primes and numbers with pairwise coprime prime indices are A302569.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime standard composition numbers are A333227.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!CoprimeQ@@primeMS[#]&]

A327389 Maximum divisor of n that is prime or whose prime indices are pairwise coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 16, 17, 6, 19, 20, 7, 22, 23, 24, 5, 26, 3, 28, 29, 30, 31, 32, 33, 34, 35, 12, 37, 38, 13, 40, 41, 14, 43, 44, 15, 46, 47, 48, 7, 10, 51, 52, 53, 6, 55, 56, 19, 58, 59, 60, 61, 62, 7, 64, 13, 66, 67, 68, 69
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Max[Select[Divisors[n],UnsameQ@@Sort[Join@@Union/@primeMS/@primeMS[#]]&]],{n,100}]

Formula

If n is in A302569, then a(n) = n.

A327401 Quotient of n over the maximum divisor of n that is 1, prime, or whose prime indices are pairwise coprime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 5, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 9, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 27, 1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 20 2019

Keywords

Comments

All terms are odd.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Numbers > 1 that are prime or whose prime indices are pairwise coprime are listed in A302569.

Examples

			The divisors of 84 that are 1, prime, or whose prime indices are pairwise coprime are {1, 2, 3, 4, 6, 7, 12, 14, 28}, so a(84) = 84/28 = 3.
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[n/Max[Select[Divisors[n],#==1||PrimeQ[#]||CoprimeQ@@primeMS[#]&]],{n,100}]

A327514 Quotient of n over the maximum divisor of n that is 1, 2, or a nonprime number whose prime indices are pairwise coprime.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 1, 1, 1, 17, 3, 19, 1, 21, 1, 23, 1, 25, 1, 27, 1, 29, 1, 31, 1, 1, 1, 1, 3, 37, 1, 39, 1, 41, 3, 43, 1, 3, 1, 47, 1, 49, 5, 1, 1, 53, 9, 1, 1, 57, 1, 59, 1, 61, 1, 63, 1, 65, 1, 67, 1, 1, 1, 71, 3, 73, 1, 5, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 19 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Numbers that are 1, 2, or a nonprime number whose prime indices are pairwise coprime are listed in A302696.

Examples

			The divisors of 72 that are 1, 2, or nonprime numbers whose prime indices are pairwise coprime are: {1, 2, 4, 6, 8, 12, 24}, so a(72) = 72/24 = 3.
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[n/Max[Select[Divisors[n],#==1||CoprimeQ@@primeMS[#]&]],{n,100}]

A336620 Numbers that are not a product of elements of A304711.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 42, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 78, 79, 81, 83, 87, 89, 91, 97, 101, 103, 105, 107, 109, 111, 113, 114, 115, 117, 121, 125, 126, 127, 129, 130, 131, 133, 137, 139, 147, 149
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2020

Keywords

Comments

A304711 lists numbers whose distinct prime indices are pairwise coprime.
The first term divisible by 4 is a(421) = 1092.

Examples

			The sequence of terms together with their prime indices begins:
      3: {2}         39: {2,6}       78: {1,2,6}
      5: {3}         41: {13}        79: {22}
      7: {4}         42: {1,2,4}     81: {2,2,2,2}
      9: {2,2}       43: {14}        83: {23}
     11: {5}         47: {15}        87: {2,10}
     13: {6}         49: {4,4}       89: {24}
     17: {7}         53: {16}        91: {4,6}
     19: {8}         57: {2,8}       97: {25}
     21: {2,4}       59: {17}       101: {26}
     23: {9}         61: {18}       103: {27}
     25: {3,3}       63: {2,2,4}    105: {2,3,4}
     27: {2,2,2}     65: {3,6}      107: {28}
     29: {10}        67: {19}       109: {29}
     31: {11}        71: {20}       111: {2,12}
     37: {12}        73: {21}       113: {30}
		

Crossrefs

A336426 is the version for superprimorials, with complement A181818.
A336497 is the version for superfactorials, with complement A336496.
A336735 is the complement.
A000837 counts relatively prime partitions, with strict case A007360.
A001055 counts factorizations.
A302696 lists numbers with coprime prime indices.
A304711 lists numbers with coprime distinct prime indices.

Programs

  • Mathematica
    nn=100;
    dat=Select[Range[nn],CoprimeQ@@PrimePi/@First/@FactorInteger[#]&];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[nn],facsusing[dat,#]=={}&]

A336735 Products of elements of A304711.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106
Offset: 1

Views

Author

Gus Wiseman, Aug 02 2020

Keywords

Comments

A304711 lists numbers whose distinct prime indices are pairwise coprime.
First differs from A304711 in having 84.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            28: {1,1,4}         52: {1,1,6}
      2: {1}           30: {1,2,3}         54: {1,2,2,2}
      4: {1,1}         32: {1,1,1,1,1}     55: {3,5}
      6: {1,2}         33: {2,5}           56: {1,1,1,4}
      8: {1,1,1}       34: {1,7}           58: {1,10}
     10: {1,3}         35: {3,4}           60: {1,1,2,3}
     12: {1,1,2}       36: {1,1,2,2}       62: {1,11}
     14: {1,4}         38: {1,8}           64: {1,1,1,1,1,1}
     15: {2,3}         40: {1,1,1,3}       66: {1,2,5}
     16: {1,1,1,1}     44: {1,1,5}         68: {1,1,7}
     18: {1,2,2}       45: {2,2,3}         69: {2,9}
     20: {1,1,3}       46: {1,9}           70: {1,3,4}
     22: {1,5}         48: {1,1,1,1,2}     72: {1,1,1,2,2}
     24: {1,1,1,2}     50: {1,3,3}         74: {1,12}
     26: {1,6}         51: {2,7}           75: {2,3,3}
		

Crossrefs

A181818 is the version for superprimorials, with complement A336426.
A336496 is the version for superfactorials, with complement A336497.
A336620 is the complement.
A000837 counts relatively prime partitions, with strict case A007360.
A001055 counts factorizations.
A302696 lists numbers with coprime prime indices.
A304711 lists numbers with coprime distinct prime indices.

Programs

  • Mathematica
    nn=100;
    dat=Select[Range[nn],CoprimeQ@@PrimePi/@First/@FactorInteger[#]&];
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Select[Range[nn],facsusing[dat,#]!={}&]

A338318 Composite numbers whose prime indices are pairwise intersecting (non-coprime).

Original entry on oeis.org

9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393
Offset: 1

Views

Author

Gus Wiseman, Oct 31 2020

Keywords

Comments

First differs from A322336 in lacking 2535, with prime indices {2,3,6,6}.
First differs from A327685 in having 17719, with prime indices {6,10,15}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of pairwise intersecting (non-coprime) partitions with more than one part. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}        121: {5,5}        243: {2,2,2,2,2}
     21: {2,4}        125: {3,3,3}      247: {6,8}
     25: {3,3}        129: {2,14}       259: {4,12}
     27: {2,2,2}      133: {4,8}        261: {2,2,10}
     39: {2,6}        147: {2,4,4}      267: {2,24}
     49: {4,4}        159: {2,16}       273: {2,4,6}
     57: {2,8}        169: {6,6}        289: {7,7}
     63: {2,2,4}      171: {2,2,8}      299: {6,9}
     65: {3,6}        183: {2,18}       301: {4,14}
     81: {2,2,2,2}    185: {3,12}       303: {2,26}
     87: {2,10}       189: {2,2,2,4}    305: {3,18}
     91: {4,6}        203: {4,10}       319: {5,10}
    111: {2,12}       213: {2,20}       321: {2,28}
    115: {3,9}        235: {3,15}       325: {3,3,6}
    117: {2,2,6}      237: {2,22}       333: {2,2,12}
		

Crossrefs

A200976 counts the partitions with these Heinz numbers.
A302696 is the pairwise coprime instead of pairwise non-coprime version.
A337694 includes the primes.
A002808 lists composite numbers.
A318717 counts pairwise intersecting strict partitions.
A328673 counts partitions with pairwise intersecting distinct parts, with Heinz numbers A328867 and restriction to triples A337599 (except n = 3).

Programs

  • Mathematica
    stabstrQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Select[Range[2,100],!PrimeQ[#]&&stabstrQ[PrimePi/@First/@FactorInteger[#],CoprimeQ]&]

Formula

Equals A337694 \ A008578.
Previous Showing 61-70 of 75 results. Next