A338468
Odd squarefree numbers whose prime indices have no common divisor > 1.
Original entry on oeis.org
15, 33, 35, 51, 55, 69, 77, 85, 93, 95, 105, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 195, 201, 205, 209, 215, 217, 219, 221, 231, 249, 253, 255, 265, 285, 287, 291, 295, 309, 323, 327, 329, 335, 341, 345, 355, 357, 381, 385, 391, 395, 403, 407, 411
Offset: 1
The sequence of terms together with their prime indices begins:
15: {2,3} 145: {3,10} 249: {2,23} 355: {3,20}
33: {2,5} 155: {3,11} 253: {5,9} 357: {2,4,7}
35: {3,4} 161: {4,9} 255: {2,3,7} 381: {2,31}
51: {2,7} 165: {2,3,5} 265: {3,16} 385: {3,4,5}
55: {3,5} 177: {2,17} 285: {2,3,8} 391: {7,9}
69: {2,9} 187: {5,7} 287: {4,13} 395: {3,22}
77: {4,5} 195: {2,3,6} 291: {2,25} 403: {6,11}
85: {3,7} 201: {2,19} 295: {3,17} 407: {5,12}
93: {2,11} 205: {3,13} 309: {2,27} 411: {2,33}
95: {3,8} 209: {5,8} 323: {7,8} 413: {4,17}
105: {2,3,4} 215: {3,14} 327: {2,29} 415: {3,23}
119: {4,7} 217: {4,11} 329: {4,15} 429: {2,5,6}
123: {2,13} 219: {2,21} 335: {3,19} 435: {2,3,10}
141: {2,15} 221: {6,7} 341: {5,11} 437: {8,9}
143: {5,6} 231: {2,4,5} 345: {2,3,9} 447: {2,35}
A337452 counts partitions with these Heinz numbers (ordered version:
A337451).
A056911 lists odd squarefree numbers.
A289509 lists Heinz numbers of relatively prime partitions, counted by
A000837 (ordered version:
A000740).
Cf.
A000010,
A007359,
A051424,
A055684,
A056239,
A101268,
A289508,
A302505,
A302569,
A302696,
A302798,
A337694.
A338553
Number of integer partitions of n that are either constant or relatively prime.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 15, 20, 29, 37, 56, 68, 101, 122, 170, 213, 297, 352, 490, 587, 778, 948, 1255, 1488, 1953, 2337, 2983, 3585, 4565, 5393, 6842, 8123, 10088, 12015, 14865, 17534, 21637, 25527, 31085, 36701, 44583, 52262, 63261, 74175, 88936, 104305, 124754
Offset: 0
The a(1) = 1 through a(7) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (51) (52)
(211) (221) (222) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(11111) (2211) (421)
(3111) (511)
(21111) (2221)
(111111) (3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
A078374(n) + 1 is the strict case (n > 1).
A338555 gives the Heinz numbers of these partitions.
A000837 counts relatively prime partitions, with Heinz numbers
A289509.
A282750 counts relatively prime partitions by sum and length.
Cf.
A000010,
A007360,
A008284,
A023023,
A051424,
A101271,
A101391,
A302698,
A304712,
A327516,
A337664.
-
Table[Length[Select[IntegerPartitions[n],SameQ@@#||GCD@@#==1&]],{n,0,30}]
A338554
Number of non-constant integer partitions of n whose parts have a common divisor > 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 5, 0, 9, 0, 13, 6, 18, 0, 33, 0, 40, 14, 54, 0, 87, 5, 99, 27, 133, 0, 211, 0, 226, 55, 295, 18, 443, 0, 488, 100, 637, 0, 912, 0, 1000, 198, 1253, 0, 1775, 13, 1988, 296, 2434, 0, 3358, 59, 3728, 489, 4563, 0, 6241, 0, 6840, 814
Offset: 0
The a(6) = 2 through a(15) = 6 partitions (empty columns indicated by dots, A = 10, B = 11, C = 12):
(42) . (62) (63) (64) . (84) . (86) (96)
(422) (82) (93) (A4) (A5)
(442) (A2) (C2) (C3)
(622) (633) (644) (663)
(4222) (642) (662) (933)
(822) (842) (6333)
(4422) (A22)
(6222) (4442)
(42222) (6422)
(8222)
(44222)
(62222)
(422222)
A303280(n) - 1 is the strict case (n > 1).
A338552 lists the Heinz numbers of these partitions.
A000837 counts relatively prime partitions, with Heinz numbers
A289509.
A282750 counts relatively prime partitions by sum and length.
-
Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&GCD@@#>1&]],{n,0,30}]
A305736
Number of integer partitions of n whose greatest common divisor is composite (nonprime and > 1).
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 4, 0, 1, 1, 5, 0, 4, 0, 8, 1, 1, 0, 14, 1, 1, 3, 16, 0, 10, 0, 22, 1, 1, 1, 41, 0, 1, 1, 45, 0, 18, 0, 57, 9, 1, 0, 94, 1, 8, 1, 102, 0, 38, 1, 138, 1, 1, 0, 221, 0, 1, 17, 231, 1, 59, 0, 298, 1, 22
Offset: 1
The a(12) = 4 integer partitions are (12), (8 4), (6 6), (4 4 4).
-
Table[Length[Select[IntegerPartitions[n],!(GCD@@#==1||PrimeQ[GCD@@#])&]],{n,0,20}]
-
seq(n)={dirmul(vector(n, n, numbpart(n)), dirmul(vector(n, n, moebius(n)), vector(n, n, n>1&&!isprime(n))))} \\ Andrew Howroyd, Jun 22 2018
Comments