A321271
Number of connected factorizations of n into positive integers > 1 with z-density -1.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1
Offset: 1
The a(72) = 8 factorizations are (2*2*3*6), (2*2*18), (2*3*12), (2*36), (3*4*6), (3*24), (4*18), (72). Missing from this list but still connected are (2*6*6),(6*12).
Cf.
A001055,
A001221,
A030019,
A286518,
A303837,
A304118,
A304382,
A305052,
A305081,
A305193,
A305253,
A319786,
A321229,
A321253.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[Times@@s];
Table[Length[Select[facs[n],And[zensity[#]==-1,Length[zsm[#]]==1]&]],{n,100}]
A321272
Number of connected multiset partitions with multiset density -1, of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
0, 1, 2, 1, 3, 2, 5, 1, 4, 4, 7, 3, 11, 7, 8, 1, 15, 8, 22, 7, 14, 12, 30, 5, 16, 19, 20, 14, 42, 18, 56, 1, 24, 30, 28, 18, 77, 45, 38, 14
Offset: 1
Non-isomorphic representatives of the a(2) = 1 through a(15) = 8 multiset partitions:
{{1}} {{11}} {{12}} {{111}} {{112}} {{1111}}
{{1}{1}} {{1}{11}} {{1}{12}} {{1}{111}}
{{1}{1}{1}} {{11}{11}}
{{1}{1}{11}}
{{1}{1}{1}{1}}
.
{{123}} {{1122}} {{1112}} {{11111}}
{{1}{122}} {{1}{112}} {{1}{1111}}
{{2}{112}} {{11}{12}} {{11}{111}}
{{1}{2}{12}} {{1}{1}{12}} {{1}{1}{111}}
{{1}{11}{11}}
{{1}{1}{1}{11}}
{{1}{1}{1}{1}{1}}
.
{{1123}} {{111111}} {{11112}} {{11122}}
{{1}{123}} {{1}{11111}} {{1}{1112}} {{1}{1122}}
{{12}{13}} {{11}{1111}} {{11}{112}} {{11}{122}}
{{111}{111}} {{12}{111}} {{2}{1112}}
{{1}{1}{1111}} {{1}{1}{112}} {{1}{1}{122}}
{{1}{11}{111}} {{1}{11}{12}} {{1}{2}{112}}
{{11}{11}{11}} {{1}{1}{1}{12}} {{2}{11}{12}}
{{1}{1}{1}{111}} {{1}{1}{2}{12}}
{{1}{1}{11}{11}}
{{1}{1}{1}{1}{11}}
{{1}{1}{1}{1}{1}{1}}
Cf.
A007718,
A181821,
A303837,
A304382,
A305081,
A305936,
A318284,
A321155,
A321229,
A321253,
A321270,
A321271.
A305103
Heinz numbers of connected integer partitions with z-density -1.
Original entry on oeis.org
2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167, 171
Offset: 1
195 is the Heinz number of {2,3,6} with corresponding multiset multisystem {{1},{2},{1,2}}, which is connected with z-density -1.
Cf.
A001221,
A056239,
A112798,
A286518,
A302242,
A303837,
A304714,
A304716,
A305052,
A305078,
A305079.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]];
Select[Range[300],And[zens[#]==-1,Length[zsm[primeMS[#]]]==1]&]
A321279
Number of z-trees with product A181821(n). Number of connected antichains of multisets with multiset density -1, of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
0, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 2, 2, 1, 2, 3, 4, 4, 2, 4, 3, 4, 4, 3, 4, 6, 4, 6, 2, 1, 4, 6, 4, 9, 6, 5, 3, 9, 2, 8, 4, 9, 8, 7, 4, 8, 4, 12, 6, 12, 5, 16, 8, 17, 5, 7, 2, 19, 6, 10, 10, 1, 6, 13, 2, 16, 7, 16, 6, 27, 4, 7, 16, 20, 8, 15, 4, 22
Offset: 1
The sequence of antichains begins:
2: {{1}}
3: {{1,1}}
3: {{1},{1}}
4: {{1,2}}
5: {{1,1,1}}
5: {{1},{1},{1}}
6: {{1,1,2}}
7: {{1,1,1,1}}
7: {{1,1},{1,1}}
7: {{1},{1},{1},{1}}
8: {{1,2,3}}
9: {{1,1,2,2}}
10: {{1,1,1,2}}
10: {{1,1},{1,2}}
11: {{1,1,1,1,1}}
11: {{1},{1},{1},{1},{1}}
12: {{1,1,2,3}}
12: {{1,2},{1,3}}
13: {{1,1,1,1,1,1}}
13: {{1,1,1},{1,1,1}}
13: {{1,1},{1,1},{1,1}}
13: {{1},{1},{1},{1},{1},{1}}
14: {{1,1,1,1,2}}
14: {{1,2},{1,1,1}}
15: {{1,1,1,2,2}}
15: {{1,1},{1,2,2}}
16: {{1,2,3,4}}
Cf.
A001055,
A007718,
A030019,
A181821,
A293607,
A303837,
A304382,
A305081,
A305936,
A318284,
A321229,
A321270,
A321271,
A321272.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Table[Length[Select[facs[Times@@Prime/@nrmptn[n]],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,50}]
A303674
Number of connected integer partitions of n > 1 whose distinct parts are pairwise indivisible and whose z-density is -1.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 1, 6, 4, 5, 1, 8, 2, 7, 5, 11, 3, 11, 5, 13, 6, 14, 7, 19, 6, 19, 15, 24, 13, 28, 15, 33, 20, 34, 22, 46, 30, 48, 32, 57, 39, 67, 48, 76, 63, 88, 62, 104, 88, 110, 94, 130, 115, 164, 121, 172, 152, 198, 176, 229, 203, 270, 235, 293, 272, 341, 311, 375, 349, 453, 420, 506, 452, 570, 547
Offset: 1
The a(18) = 8 integer partitions are (18), (14,4), (10,8), (9,9), (10,4,4), (6,4,4,4), (3,3,3,3,3,3), (2,2,2,2,2,2,2,2,2).
The a(20) = 7 integer partitions are (20), (14,6), (12,8), (10,6,4), (5,5,5,5), (4,4,4,4,4), (2,2,2,2,2,2,2,2,2,2).
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Table[Length[Select[IntegerPartitions[n],And[zensity[#]==-1,Length[zsm[#]]==1,Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,30}]
A305761
Nonprime Heinz numbers of z-trees.
Original entry on oeis.org
91, 203, 247, 299, 301, 377, 427, 551, 553, 559, 611, 689, 703, 707, 791, 817, 851, 923, 949, 973, 1027, 1073, 1081, 1141, 1159, 1247, 1267, 1313, 1339, 1349, 1363, 1391, 1393, 1501, 1537, 1591, 1603, 1679, 1703, 1739, 1757, 1769, 1781, 1807, 1897, 1919, 1961
Offset: 1
2639 is the Heinz number of {4,6,10}, a z-tree corresponding to the multiset system {{1,1},{1,2},{1,3}}.
Cf.
A030019,
A056239,
A112798,
A286520,
A302242,
A303362,
A303837,
A304118,
A304714,
A304716,
A305052,
A305078,
A305079,
A305081.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Select[Range[3000],With[{p=primeMS[#]},And[UnsameQ@@p,Length[p]>1,zensity[p]==-1,Length[zsm[p]]==1,Select[Tuples[p,2],UnsameQ@@#&&Divisible@@#&]=={}]]&]
Comments