cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 69 results. Next

A322389 Vertex-connectivity of the integer partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The integer partition (6,4,3) with Heinz number 455 does not become disconnected or empty if 2 is divided out giving (3,3), or if 3 is divided out giving (4,2), but it does become disconnected or empty if both 2 and 3 are divided out giving (); so a(455) = 2.
195 is the Heinz number of (6,3,2), corresponding to the multiset partition {{1},{2},{1,2}}. Removing the vertex 1 gives {{2},{2}}, while removing 2 gives {{1},{1}}. These are both connected, so both vertices must be removed to obtain a disconnected or empty multiset partition; hence a(195) = 2.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Array[vertConn@*primeMS,100]

A327076 Maximum divisor of n that is 1 or connected.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 9, 5, 11, 3, 13, 7, 5, 2, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 5, 31, 2, 11, 17, 7, 9, 37, 19, 39, 5, 41, 21, 43, 11, 9, 23, 47, 3, 49, 25, 17, 13, 53, 27, 11, 7, 57, 29, 59, 5, 61, 31, 63, 2, 65, 11, 67, 17, 23, 7, 71, 9, 73
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A number n with prime factorization n = prime(m_1)^s_1 * ... * prime(m_k)^s_k is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078, which is the union of this sequence without 1.
Also the maximum MM-number (A302242) of a connected subset of the multiset of multisets with MM-number n.

Crossrefs

Positions of prime numbers are A302569.
Connected numbers are A305078.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Max[Select[Divisors[n],Length[zsm[primeMS[#]]]<=1&]],{n,30}]

Formula

If n is in A305078, then a(n) = n.

A304911 Number of labeled hyperforests spanning n vertices without singleton edges.

Original entry on oeis.org

1, 0, 1, 4, 32, 351, 5057, 90756, 1956971, 49366904, 1427680932, 46590895869, 1694163054597, 67938488277050, 2978980898086377, 141801848209013050, 7282651452378019772, 401410357608479625207, 23635996827115264290005
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Examples

			The a(3) = 4 hyperforests are {{1,2,3}}, {{1,3},{2,3}}, {{1,2},{2,3}}, {{1,2},{1,3}}.
		

Crossrefs

Formula

E.g.f.: exp(A030019(x) - x - 1) where A030019(x) is the e.g.f. of A030019.

A218970 Number of connected cyclic conjugacy classes of subgroups of the symmetric group.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 5, 3, 8, 2, 14, 3, 17, 11, 24, 10, 40, 16, 53, 35, 71, 43, 112, 68, 144, 112, 203, 152, 301, 219, 393, 342, 540, 474, 770, 661, 1022, 967, 1397, 1313, 1928, 1821, 2565, 2564, 3439, 3445, 4676, 4687, 6186, 6406, 8215, 8543, 10974, 11435
Offset: 0

Views

Author

Liam Naughton, Nov 26 2012

Keywords

Comments

a(n) is also the number of connected partitions of n in the following sense. Given a partition of n, the vertices are the parts of the partition and two vertices are connected if and only if their gcd is greater than 1. We call a partition connected if the graph is connected.

Examples

			From _Gus Wiseman_, Dec 03 2018: (Start)
The a(12) = 14 connected integer partitions of 12:
  (12)  (6,6)   (4,4,4)  (3,3,3,3)  (4,2,2,2,2)  (2,2,2,2,2,2)
        (8,4)   (6,3,3)  (4,4,2,2)
        (9,3)   (6,4,2)  (6,2,2,2)
        (10,2)  (8,2,2)
(End)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]==1&]],{n,10}]

Formula

For n > 1, a(n) = A304716(n) - 1. - Gus Wiseman, Dec 03 2018

Extensions

More terms from Gus Wiseman, Dec 03 2018

A325118 Heinz numbers of binary carry-connected integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, 20, 22, 23, 25, 27, 29, 30, 31, 32, 34, 37, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 53, 55, 59, 60, 61, 62, 64, 65, 67, 68, 71, 73, 75, 77, 79, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 92, 93, 94, 97, 100
Offset: 1

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. An integer partition is binary carry-connected if the graph whose vertices are the parts and whose edges are binary carries is connected.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose prime indices are binary carry-connected. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
		

Crossrefs

Programs

  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[100],Length[csm[binpos/@PrimePi/@First/@FactorInteger[#]]]<=1&]

A304717 Number of connected strict integer partitions of n with pairwise indivisible parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 2, 4, 3, 5, 2, 5, 4, 6, 3, 7, 6, 9, 5, 9, 8, 13, 10, 15, 9, 15, 13, 18, 14, 22, 21, 26, 19, 29, 24, 36, 31, 40, 35, 45, 38, 54, 55, 59, 55, 70, 69, 84, 74, 89, 86, 107, 103, 119, 115, 143, 143, 159
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(34) = 13 connected strict integer partitions with pairwise indivisible parts are (34), (18,16), (20,14), (22,12), (24,10), (26,8), (28,6), (30,4), (14,12,8), (15,10,9), (20,8,6), (14,10,6,4), (15,9,6,4). Their corresponding multiset multisystems (see A112798, A302242) are the following.
         (34): {{1,7}}
       (30 4): {{1,2,3},{1,1}}
       (28 6): {{1,1,4},{1,2}}
       (26 8): {{1,6},{1,1,1}}
      (24 10): {{1,1,1,2},{1,3}}
      (22 12): {{1,5},{1,1,2}}
      (20 14): {{1,1,3},{1,4}}
     (20 8 6): {{1,1,3},{1,1,1},{1,2}}
      (18 16): {{1,2,2},{1,1,1,1}}
    (15 10 9): {{2,3},{1,3},{2,2}}
   (15 9 6 4): {{2,3},{2,2},{1,2},{1,1}}
    (14 12 8): {{1,4},{1,1,2},{1,1,1}}
  (14 10 6 4): {{1,4},{1,3},{1,2},{1,1}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]===1&&Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]==={}&]],{n,30}]

A322335 Number of 2-edge-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 1, 37, 2, 45, 18, 58, 8, 95, 19, 109, 45, 150, 38, 232, 59, 268, 129, 357, 155, 523, 203, 633, 359, 852, 431, 1185, 609, 1464, 969
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

First differs from A108572 at a(17) = 1, A108572(17) = 0.
An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part. For example (6,6,3,2) is 2-edge-connected but (6,3,2) is not.

Examples

			The a(14) = 15 2-edge-connected integer partitions of 14:
  (7,7)   (6,4,4)   (4,4,4,2)  (4,4,2,2,2)  (4,2,2,2,2,2)  (2,2,2,2,2,2,2)
  (8,6)   (6,6,2)   (6,4,2,2)  (6,2,2,2,2)
  (10,4)  (8,4,2)   (8,2,2,2)
  (12,2)  (10,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
    Table[Length[Select[IntegerPartitions[n],twoedQ[primeMS/@#]&]],{n,30}]

Extensions

a(42)-a(45) from Jinyuan Wang, Jun 20 2020

A305193 Number of connected factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 10, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 12, 1, 2, 2, 5, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Gus Wiseman, May 27 2018

Keywords

Comments

Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence counts factorizations S such that G(S) is a connected graph.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Nov 07 2018

Examples

			The a(72) = 10 factorizations:
(72),
(2*2*18), (2*3*12), (2*6*6), (3*4*6),
(2*36), (3*24), (4*18), (6*12),
(2*2*3*6).
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Length[zsm[#]]==1&]],{n,100}]
  • PARI
    is_connected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A305193aux(n, m, facs) = if(1==n, is_connected(Set(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A305193aux(n/d, d, newfacs))); (s)); \\ Antti Karttunen, Nov 07 2018
    A305193(n) = if(1==n,0,A305193aux(n, n, List([]))); \\ Antti Karttunen, Nov 07 2018

Extensions

More terms from Antti Karttunen, Nov 07 2018

A322336 Heinz numbers of 2-edge-connected integer partitions.

Original entry on oeis.org

9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393, 399
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part. For example (6,6,3,2) is 2-edge-connected but (6,3,2) is not.

Examples

			The sequence of all 2-edge-connected integer partitions begins: (2,2), (4,2), (3,3), (2,2,2), (6,2), (4,4), (8,2), (4,2,2), (6,3), (2,2,2,2), (10,2), (6,4), (12,2), (9,3), (6,2,2), (5,5), (3,3,3), (14,2), (8,4), (4,4,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
    Select[Range[100],twoedQ[primeMS/@primeMS[#]]&]

A322387 Number of 2-vertex-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 6, 2, 10, 8, 13, 9, 26, 14, 35, 28, 50, 37, 77, 54, 101, 84, 138, 110, 205, 149, 252, 222, 335, 287, 455, 375, 577, 522, 740, 657, 985
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

An integer partition is 2-vertex-connected if the prime factorizations of the parts form a connected hypergraph that is still connected if any single prime number is divided out of all the parts (and any parts then equal to 1 are removed).

Examples

			The a(14) = 10 2-vertex-connected integer partitions:
  (14)  (8,6)   (6,4,4)   (6,3,3,2)  (6,2,2,2,2)
        (10,4)  (6,6,2)   (6,4,2,2)
        (12,2)  (10,2,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]

Extensions

a(41)-a(42) from Jinyuan Wang, Jun 20 2020
Previous Showing 11-20 of 69 results. Next