cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A263296 Triangle read by rows: T(n,k) is the number of graphs with n vertices with edge connectivity k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 10, 8, 2, 1, 44, 52, 41, 15, 3, 1, 191, 351, 352, 121, 25, 3, 1, 1229, 3714, 4820, 2159, 378, 41, 4, 1, 13588, 63638, 113256, 68715, 14306, 1095, 65, 4, 1, 288597, 1912203, 4602039, 3952378, 1141575, 104829, 3441, 100, 5, 1
Offset: 1

Views

Author

Christian Stump, Oct 13 2015

Keywords

Comments

This is spanning edge-connectivity. The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. The non-spanning edge-connectivity of a graph (A327236) is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty. Compare to vertex-connectivity (A259862). - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
     1;
     1,    1;
     2,    1,    1;
     5,    3,    2,    1;
    13,   10,    8,    2,   1;
    44,   52,   41,   15,   3,  1;
   191,  351,  352,  121,  25,  3, 1;
  1229, 3714, 4820, 2159, 378, 41, 4, 1;
  ...
		

Crossrefs

Row sums give A000088, n >= 1.
Number of graphs with edge connectivity at least k for k=1..10 are A001349, A007146, A324226, A324227, A324228, A324229, A324230, A324231, A324232, A324233.
The labeled version is A327069.

Extensions

a(22)-a(55) added by Andrew Howroyd, Aug 11 2019

A327144 Spanning edge-connectivity of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Positions of first appearances of each integer together with the corresponding set-systems:
     0: {}
     1: {{1}}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
  3952: {{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4}}
  8052: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}}
		

Crossrefs

Dominated by A327103.
The same for cut-connectivity is A326786.
The same for non-spanning edge-connectivity is A326787.
The same for vertex-connectivity is A327051.
Positions of 1's are A327111.
Positions of 2's are A327108.
Positions of first appearance of each integer are A327147.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[spanEdgeConn[Union@@bpe/@bpe[n],bpe/@bpe[n]],{n,0,100}]

A327102 BII-numbers of set-systems with non-spanning edge-connectivity >= 2.

Original entry on oeis.org

5, 6, 17, 20, 21, 24, 34, 36, 38, 40, 48, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 106, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
A set-system has non-spanning 2-edge-connectivity >= 2 if it is connected and any single edge can be removed (along with any non-covered vertices) without making the set-system disconnected or empty. Alternatively, these are connected set-systems whose bridges (edges whose removal disconnects the set-system or leaves isolated vertices) are all endpoints (edges intersecting only one other edge).

Examples

			The sequence of all set-systems with non-spanning edge-connectivity >= 2 together with their BII-numbers begins:
   5: {{1},{1,2}}
   6: {{2},{1,2}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  24: {{3},{1,3}}
  34: {{2},{2,3}}
  36: {{1,2},{2,3}}
  38: {{2},{1,2},{2,3}}
  40: {{3},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  53: {{1},{1,2},{1,3},{2,3}}
  54: {{2},{1,2},{1,3},{2,3}}
  55: {{1},{2},{1,2},{1,3},{2,3}}
  56: {{3},{1,3},{2,3}}
  60: {{1,2},{3},{1,3},{2,3}}
  61: {{1},{1,2},{3},{1,3},{2,3}}
  62: {{2},{1,2},{3},{1,3},{2,3}}
  63: {{1},{2},{1,2},{3},{1,3},{2,3}}
		

Crossrefs

Graphs with spanning edge-connectivity >= 2 are counted by A095983.
Graphs with non-spanning edge-connectivity >= 2 are counted by A322395.
Also positions of terms >=2 in A326787.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity >= 2 are A327109.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[bpe/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[bpe/@#]]!=1&]];
    Select[Range[0,100],edgeConn[bpe[#]]>=2&]

A327201 Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of unlabeled simple graphs covering n vertices with non-spanning edge-connectivity k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 1, 2, 3, 7, 5, 4, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Sep 03 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a disconnected or empty graph, ignoring isolated vertices.

Examples

			Triangle begins:
  1
  {}
  0 1
  0 0 1 1
  1 1 2 2 1
  2 3 7 5 4 1 1
		

Crossrefs

Row sums are A002494.
Column k = 0 is A327075.
The labeled version is A327149.
Spanning edge-connectivity is A263296.
The non-covering version is A327236 (partial sums).

A327200 Number of labeled graphs with n vertices and non-spanning edge-connectivity >= 2.

Original entry on oeis.org

0, 0, 0, 4, 42, 718, 26262, 1878422, 256204460, 67525498676, 34969833809892, 35954978661632864, 73737437034063350534, 302166248212488958298674, 2475711390267267917290354410, 40563960064630744031043287569378, 1329219366981359393514586291328267704
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

The non-spanning edge-connectivity of a graph is the minimum number of edges that must be removed to obtain a graph whose edge-set is disconnected or empty.

Crossrefs

Row sums of A327148 if the first two columns are removed.
BII-numbers of set-systems with non-spanning edge-connectivity >= 2 are A327102.
Graphs with non-spanning edge-connectivity 1 are A327231.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    eConn[sys_]:=If[Length[csm[sys]]!=1,0,Length[sys]-Max@@Length/@Select[Union[Subsets[sys]],Length[csm[#]]!=1&]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],eConn[#]>=2&]],{n,0,5}]

Formula

Binomial transform of A322395, if we assume A322395(0) = A322395(1) = A322395(2) = 0.

A329552 Smallest MM-number of a connected set of n sets.

Original entry on oeis.org

1, 2, 39, 195, 5655, 62205, 2674815
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
        1: {}
        2: {{}}
       39: {{1},{1,2}}
      195: {{1},{2},{1,2}}
     5655: {{1},{2},{1,2},{1,3}}
    62205: {{1},{2},{3},{1,2},{1,3}}
  2674815: {{1},{2},{3},{1,2},{1,3},{1,4}}
		

Crossrefs

MM-numbers of connected set-systems are A328514.
The weight of the system with MM-number n is A302242(n).
Connected numbers are A305078.
Maximum connected divisor is A327076.
BII-numbers of connected sets of sets are A326749.
The smallest BII-number of a connected set of n sets is A329625(n).
Allowing edges to have repeated vertices gives A329553.
Requiring the edges to form an antichain gives A329555.
The smallest MM-number of a set of n nonempty sets is A329557(n).
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    da=Select[Range[10000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&];
    Table[da[[Position[PrimeOmega/@da,n][[1,1]]]],{n,First[Split[Union[PrimeOmega/@da],#2==#1+1&]]}]

A329555 Smallest MM-number of a clutter (connected antichain) of n distinct sets.

Original entry on oeis.org

1, 2, 377, 16211, 761917
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
       1: {}
       2: {{}}
     377: {{1,2},{1,3}}
   16211: {{1,2},{1,3},{1,4}}
  761917: {{1,2},{1,3},{1,4},{2,3}}
		

Crossrefs

Spanning cutters of distinct sets are counted by A048143.
MM-numbers of connected weak-antichains are A329559.
MM-numbers of sets of sets are A302494.
The smallest BII-number of a clutter with n edges is A329627.
Not requiring the edges to form an antichain gives A329552.
Connected numbers are A305078.
Stable numbers are A316476.
Other MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    dae=Select[Range[100000],SquareFreeQ[#]&&And@@SquareFreeQ/@primeMS[#]&&Length[zsm[primeMS[#]]]<=1&&stableQ[primeMS[#],Divisible]&];
    Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]

A327517 Number of factorizations of n that are empty or have at least two factors, all of which are > 1 and pairwise coprime.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 4, 0, 1, 1, 0, 1, 4, 0, 1, 1, 4, 0, 1, 0, 1, 1, 1, 1, 4, 0, 1, 0, 1, 0, 4, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 19 2019

Keywords

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],#=={}||CoprimeQ@@#&]],{n,100}]

Formula

a(n > 1) = A259936(n) - 1 = A000110(A001221(n)) - 1.

A327199 Number of labeled simple graphs with n vertices whose edge-set is not connected.

Original entry on oeis.org

1, 1, 1, 1, 4, 56, 1031, 27189, 1165424, 89723096, 13371146135, 3989665389689, 2388718032951812, 2852540291841718752, 6768426738881535155247, 31870401029679493862010949, 297787425565749788134314214272
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

Also graphs with non-spanning edge-connectivity 0.

Examples

			The a(4) = 4 edge-sets: {}, {12,34}, {13,24}, {14,23}.
		

Crossrefs

Column k = 0 of A327148.
The covering case is A327070.
The unlabeled version is A327235.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]!=1&]],{n,0,5}]

Formula

Binomial transform of A327070.

A328513 Connected squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 37, 39, 41, 43, 47, 53, 57, 59, 61, 65, 67, 71, 73, 79, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 127, 129, 131, 133, 137, 139, 149, 151, 157, 159, 163, 167, 173, 179, 181, 183, 185, 191, 193, 195
Offset: 1

Views

Author

Gus Wiseman, Oct 20 2019

Keywords

Comments

First differs from A318718 and A318719 in having 195 = prime(2) * prime(3) * prime(6).
A squarefree number with prime factorization prime(m_1) * ... * prime(m_k) is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078.

Examples

			The sequence of all connected sets of multisets together with their MM-numbers (A302242) begins:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
  11: {{3}}
  13: {{1,2}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  29: {{1,3}}
  31: {{5}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  47: {{2,3}}
  53: {{1,1,1,1}}
  57: {{1},{1,1,1}}
		

Crossrefs

A subset of A005117.
These are Heinz numbers of the partitions counted by A304714.
The maximum connected squarefree divisor of n is A327398(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[100],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&]

Formula

Intersection of A005117 and A305078.
Showing 1-10 of 18 results. Next