cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A304968 Number of labeled hypertrees spanning some subset of {1,...,n}, with singleton edges allowed.

Original entry on oeis.org

1, 2, 7, 48, 621, 12638, 351987, 12426060, 531225945, 26674100154, 1538781595999, 100292956964456, 7288903575373509, 584454485844541718, 51256293341752583499, 4880654469385955209092, 501471626403154217825457, 55300894427785157597436786
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			The a(2) = 7 hypertrees are the following:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A134958 with b(1)=1.
    b(n)=if(n<2, n>=0, 2^n*sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018

Formula

Binomial transform of b(1) = 1, b(n) = A134958(n) otherwise.

A304970 Number of unlabeled hypertrees with up to n vertices and without singleton edges.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 39, 98, 263, 759, 2299, 7259, 23649, 79057, 269629, 935328, 3290260, 11714285, 42139053, 152963037, 559697097, 2062574000, 7649550572, 28534096988, 106994891146, 403119433266, 1525466082179, 5795853930652, 22102635416716, 84579153865570
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 8 hypertrees are the following:
{}
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)))/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

Partial sums of A035053 if we assume A035053(1) = 0.
a(n) = A304937(n) + 1 for n > 0.

A305028 Number of unlabeled blobs spanning n vertices without singleton edges.

Original entry on oeis.org

1, 0, 1, 2, 10, 128
Offset: 0

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

A blob is a connected antichain of finite sets that cannot be capped by a hypertree with more than one branch.

Examples

			Non-isomorphic representatives of the a(4) = 10 blobs:
  {{1,2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

A318601 Triangle read by rows: T(n,k) is the number of hypertrees on n unlabeled nodes with k edges, (0 <= k < n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 3, 3, 0, 1, 2, 6, 7, 6, 0, 1, 3, 9, 17, 18, 11, 0, 1, 3, 13, 30, 51, 44, 23, 0, 1, 4, 17, 53, 109, 148, 117, 47, 0, 1, 4, 23, 79, 213, 372, 443, 299, 106, 0, 1, 5, 28, 119, 370, 827, 1276, 1306, 793, 235
Offset: 1

Views

Author

Andrew Howroyd, Aug 29 2018

Keywords

Comments

Equivalently, the number of connected graphs on n unlabeled nodes with k blocks where every block is a complete graph.
Let R(x,y) be the g.f. of A318602 and S(x,y) be the g.f. of A318607. Then the number of hypertrees rooted at a vertex is R(x,y), the number rooted at an edge is y*(S(x,y) - R(x,y)) and the number rooted at a directed edge is y*S(x,y)*R(x,y). The dissymmetry theorem for trees gives that the number of unlabeled objects (this sequence) is the number rooted at a vertex plus the number rooted at an edge minus the number rooted at a directed edge.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1,  2;
  0, 1, 2,  3,  3;
  0, 1, 2,  6,  7,   6;
  0, 1, 3,  9, 17,  18,  11;
  0, 1, 3, 13, 30,  51,  44,  23;
  0, 1, 4, 17, 53, 109, 148, 117,  47;
  0, 1, 4, 23, 79, 213, 372, 443, 299, 106;
  ...
Case n=4: There are 4 possible graphs which are the complete graph on 4 nodes which has 1 block, a triangle joined to a single vertex which has 2 blocks and two trees which have 3 blocks. Row 4 is then 0, 1, 1, 2.
    o---o       o---o    o---o     o--o--o
    | X |      / \       |            |
    o---o     o---o      o---o        o
.
Case n=5, k=3: The following illustrates how the dissymmetry thereom for each unlabeled hypertree gives 1 = vertex rooted + edge (block) rooted - directed edge (vertex of block) rooted.
      o---o
     / \          1 = 3 + 2 - 4
    o---o---o
.
      o   o
     / \ /        1 = 3 + 2 - 4
    o---o---o
.
      o   o
     / \ / \      1 = 4 + 3 - 6
    o---o   o
.
		

Crossrefs

Rightmost diagonal is A000055 (unlabeled trees).
Row sums are A035053.

Programs

  • PARI
    \\ here b(n) is A318602 as vector of polynomials.
    EulerMT(u)={my(n=#u, p=x*Ser(u), vars=variables(p)); Vec(exp( sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i ))-1)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerMT(y*EulerMT(v)))); v}
    G(n)={my(u=b(n)); apply(p->Vecrev(p), Vec(y*Ser(EulerMT(u))*(1-x*Ser(u)) + (1 - y)*Ser(u)))}
    { my(T=G(10)); for(n=1, #T, print(T[n])) }

Formula

G.f.: R(x,y) + y*(S(x,y) - R(x,y)) - y*S(x,y)*R(x,y) where R(x,y) is the g.f. of A318602 and S(x,y) is the g.f. of A318607.

A322111 Number of non-isomorphic self-dual connected multiset partitions of weight n with multiset density -1.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 13, 13, 37, 37
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. A multiset partition is self-dual if it is isomorphic to its dual. For example, {{1,1},{1,2,2},{2,3,3}} is self-dual, as it is isomorphic to its dual {{1,1,2},{2,2,3},{3,3}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(8) = 13 multiset partitions:
  {{1}}                    {{1,1}}
.
  {{1,1,1}}                {{1,1,1,1}}
  {{2},{1,2}}              {{2},{1,2,2}}
.
  {{1,1,1,1,1}}            {{1,1,1,1,1,1}}
  {{1,1},{1,2,2}}          {{2},{1,2,2,2,2}}
  {{2},{1,2,2,2}}          {{2,2},{1,1,2,2}}
  {{2},{1,3},{2,3}}        {{2},{1,3},{2,3,3}}
  {{3},{3},{1,2,3}}        {{3},{3},{1,2,3,3}}
.
  {{1,1,1,1,1,1,1}}        {{1,1,1,1,1,1,1,1}}
  {{1,1,1},{1,2,2,2}}      {{1,1,1},{1,1,2,2,2}}
  {{2},{1,2,2,2,2,2}}      {{2},{1,2,2,2,2,2,2}}
  {{2,2},{1,1,2,2,2}}      {{2,2},{1,1,2,2,2,2}}
  {{1,1},{1,2},{2,3,3}}    {{1,1},{1,2,2},{2,3,3}}
  {{2},{1,3},{2,3,3,3}}    {{2},{1,3},{2,3,3,3,3}}
  {{2},{2,2},{1,2,3,3}}    {{2},{1,3,3},{2,2,3,3}}
  {{3},{1,2,2},{2,3,3}}    {{3},{3},{1,2,3,3,3,3}}
  {{3},{3},{1,2,3,3,3}}    {{3},{3,3},{1,2,2,3,3}}
  {{1},{1},{1,4},{2,3,4}}  {{2},{1,3},{2,4},{3,4,4}}
  {{2},{1,3},{2,4},{3,4}}  {{3},{3},{1,2,4},{3,4,4}}
  {{3},{4},{1,4},{2,3,4}}  {{3},{4},{1,4},{2,3,4,4}}
  {{4},{4},{4},{1,2,3,4}}  {{4},{4},{4},{1,2,3,4,4}}
		

Crossrefs

A304937 Number of unlabeled nonempty hypertrees with up to n vertices and no singleton edges.

Original entry on oeis.org

1, 0, 1, 3, 7, 16, 38, 97, 262, 758, 2298, 7258, 23648, 79056, 269628, 935327, 3290259, 11714284, 42139052, 152963036, 559697096, 2062573999, 7649550571, 28534096987, 106994891145, 403119433265, 1525466082178, 5795853930651, 22102635416715, 84579153865569
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			Non-isomorphic representatives of the a(5) = 16 hypertrees are the following:
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,2,3,4,5}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,5},{2,3,4,5}}
{{1,2,5},{3,4,5}}
{{1,2},{2,5},{3,4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,4},{2,5},{3,4,5}}
{{1,5},{2,5},{3,4,5}}
{{1,3},{2,4},{3,5},{4,5}}
{{1,4},{2,5},{3,5},{4,5}}
{{1,5},{2,5},{3,5},{4,5}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)) - x)/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

a(n) = a(n-1) + A035053(n) for n > 1, a(n) = 1 - n for n < 2.

A321231 Number of non-isomorphic connected weight-n multiset partitions with no singletons and multiset density -1.

Original entry on oeis.org

1, 0, 2, 3, 8, 15, 42, 94, 256, 656, 1807
Offset: 0

Views

Author

Gus Wiseman, Oct 31 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(5) = 15 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}
                      {{1,1},{1,1}}  {{1,2,3,4,4}}
                      {{1,2},{2,2}}  {{1,2,3,4,5}}
                      {{1,3},{2,3}}  {{1,1},{1,1,1}}
                                     {{1,1},{1,2,2}}
                                     {{1,2},{2,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,2},{1,2,2}}
                                     {{3,3},{1,2,3}}
		

Crossrefs

A321255 Number of connected multiset partitions with multiset density -1, of strongly normal multisets of size n, with no singletons.

Original entry on oeis.org

0, 0, 2, 3, 8, 19, 60, 183, 643, 2355, 9393
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition its multiplicities are weakly decreasing.

Examples

			The a(2) = 2 through a(5) = 19 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
  {{1,2}}  {{1,1,2}}  {{1,1,1,2}}    {{1,1,1,1,2}}
           {{1,2,3}}  {{1,1,2,2}}    {{1,1,1,2,2}}
                      {{1,1,2,3}}    {{1,1,1,2,3}}
                      {{1,2,3,4}}    {{1,1,2,2,3}}
                      {{1,1},{1,1}}  {{1,1,2,3,4}}
                      {{1,1},{1,2}}  {{1,2,3,4,5}}
                      {{1,2},{1,3}}  {{1,1},{1,1,1}}
                                     {{1,1},{1,1,2}}
                                     {{1,1},{1,2,2}}
                                     {{1,1},{1,2,3}}
                                     {{1,2},{1,1,1}}
                                     {{1,2},{1,1,3}}
                                     {{1,2},{1,3,4}}
                                     {{1,3},{1,1,2}}
                                     {{1,3},{1,2,2}}
                                     {{1,3},{1,2,4}}
                                     {{1,4},{1,2,3}}
                                     {{2,3},{1,1,2}}
		

Crossrefs

A322113 Number of non-isomorphic self-dual connected antichains of multisets of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 10, 18, 30
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. A multiset partition is self-dual if it is isomorphic to its dual. For example, {{1,1},{1,2,2},{2,3,3}} is self-dual, as it is isomorphic to its dual {{1,1,2},{2,2,3},{3,3}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(9) = 18 antichains:
  {{1}}  {{11}}  {{111}}  {{1111}}    {{11111}}    {{111111}}
                          {{12}{12}}  {{11}{122}}  {{112}{122}}
                                                   {{12}{13}{23}}
.
  {{1111111}}      {{11111111}}        {{111111111}}
  {{111}{1222}}    {{111}{11222}}      {{1111}{12222}}
  {{112}{1222}}    {{1112}{1222}}      {{1112}{11222}}
  {{11}{12}{233}}  {{112}{12222}}      {{1112}{12222}}
  {{12}{13}{233}}  {{1122}{1122}}      {{112}{122222}}
                   {{11}{122}{233}}    {{11}{11}{12233}}
                   {{12}{13}{2333}}    {{11}{122}{1233}}
                   {{13}{112}{233}}    {{112}{123}{233}}
                   {{13}{122}{233}}    {{113}{122}{233}}
                   {{12}{13}{24}{34}}  {{12}{111}{2333}}
                                       {{12}{13}{23333}}
                                       {{12}{133}{2233}}
                                       {{123}{123}{123}}
                                       {{13}{112}{2333}}
                                       {{22}{113}{2333}}
                                       {{12}{13}{14}{234}}
                                       {{12}{13}{22}{344}}
                                       {{12}{13}{24}{344}}
		

Crossrefs

A304939 Number of labeled nonempty hypertrees (connected antichains with no cycles) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 0, 1, 7, 51, 506, 6843, 118581, 2504855, 62370529, 1788082153, 57997339632, 2099638691439, 83922479506503, 3670657248913385, 174387350448735877, 8942472292255441103, 492294103555090048458, 28958704109012732921523
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(3) = 7 hypertrees are the following:
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A030019 with b(1)=0.
    b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=if(n<1, n==0, sum(k=1, n, binomial(n, k)*b(k))); \\ Andrew Howroyd, Aug 27 2018

Formula

a(n) = A305004(n) - 1 for n > 0. - Andrew Howroyd, Aug 27 2018
Previous Showing 21-30 of 36 results. Next