cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A322139 Number of labeled 2-connected simple graphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 0, 1, 3, 18, 131, 1180, 12570, 154535, 2151439, 33431046, 573197723, 10743619285, 218447494812, 4787255999220, 112454930390211, 2818138438707516, 75031660452368001, 2114705500316025737, 62890323682634277951, 1967901134191778583146, 64623905086814216468839
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Formula

a(n) = Sum_{i=3..n} A123534(i, n). - Andrew Howroyd, Nov 30 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018

A321231 Number of non-isomorphic connected weight-n multiset partitions with no singletons and multiset density -1.

Original entry on oeis.org

1, 0, 2, 3, 8, 15, 42, 94, 256, 656, 1807
Offset: 0

Views

Author

Gus Wiseman, Oct 31 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(5) = 15 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}
                      {{1,1},{1,1}}  {{1,2,3,4,4}}
                      {{1,2},{2,2}}  {{1,2,3,4,5}}
                      {{1,3},{2,3}}  {{1,1},{1,1,1}}
                                     {{1,1},{1,2,2}}
                                     {{1,2},{2,2,2}}
                                     {{1,2},{2,3,3}}
                                     {{1,3},{2,3,3}}
                                     {{1,4},{2,3,4}}
                                     {{2,2},{1,2,2}}
                                     {{3,3},{1,2,3}}
		

Crossrefs

A322138 Number of non-isomorphic weight-n blobs (2-connected weak antichains) of multisets with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 7, 7, 20, 26, 78, 184, 553
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(7) = 26 blobs:
  {{11}}  {{111}}  {{1111}}    {{11111}}  {{111111}}      {{1111111}}
  {{12}}  {{122}}  {{1122}}    {{11222}}  {{111222}}      {{1112222}}
          {{123}}  {{1222}}    {{12222}}  {{112222}}      {{1122222}}
                   {{1233}}    {{12233}}  {{112233}}      {{1122333}}
                   {{1234}}    {{12333}}  {{122222}}      {{1222222}}
                   {{11}{11}}  {{12344}}  {{122333}}      {{1222333}}
                   {{12}{12}}  {{12345}}  {{123333}}      {{1223333}}
                                          {{123344}}      {{1223344}}
                                          {{123444}}      {{1233333}}
                                          {{123455}}      {{1233444}}
                                          {{123456}}      {{1234444}}
                                          {{111}{111}}    {{1234455}}
                                          {{112}{122}}    {{1234555}}
                                          {{122}{122}}    {{1234566}}
                                          {{123}{123}}    {{1234567}}
                                          {{123}{233}}    {{112}{1222}}
                                          {{134}{234}}    {{122}{1233}}
                                          {{11}{11}{11}}  {{123}{2233}}
                                          {{12}{12}{12}}  {{123}{2333}}
                                          {{12}{13}{23}}  {{123}{2344}}
                                                          {{134}{2344}}
                                                          {{145}{2345}}
                                                          {{223}{1233}}
                                                          {{344}{1234}}
                                                          {{12}{13}{233}}
                                                          {{13}{14}{234}}
		

Crossrefs

A305195 Number of z-blobs summing to n. Number of connected strict integer partitions of n, with pairwise indivisible parts, that cannot be capped by a z-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 3, 3, 3, 1, 1, 1, 4, 5, 6, 2, 1, 1, 4, 6, 7, 2, 2, 6
Offset: 1

Views

Author

Gus Wiseman, May 27 2018

Keywords

Comments

Caps of a clutter are defined in the link, and the generalization to "multiclutters," where edges can be multisets, is straightforward.

Examples

			The a(30) = 2 z-blobs together with the corresponding multiset systems:
     (30): {{1,2,3}}
  (18,12): {{1,2,2},{1,1,2}}
The a(47) = 3 z-blobs together with the corresponding multiset systems:
        (47): {{15}}
  (21,14,12): {{2,4},{1,4},{1,1,2}}
  (20,15,12): {{1,1,3},{2,3},{1,1,2}}
The a(60) = 5 z-blobs together with the corresponding multiset systems:
           (60): {{1,1,2,3}}
        (42,18): {{1,2,4},{1,2,2}}
        (36,24): {{1,1,2,2},{1,1,1,2}}
     (30,18,12): {{1,2,3},{1,2,2},{1,1,2}}
  (21,15,14,10): {{2,4},{2,3},{1,4},{1,3}}
The a(67) = 7 z-blobs together with the corresponding multiset systems:
           (67): {{19}}
     (45,12,10): {{2,2,3},{1,1,2},{1,3}}
     (42,15,10): {{1,2,4},{2,3},{1,3}}
     (40,15,12): {{1,1,1,3},{2,3},{1,1,2}}
     (33,22,12): {{2,5},{1,5},{1,1,2}}
     (28,21,18): {{1,1,4},{2,4},{1,2,2}}
  (24,18,15,10): {{1,1,1,2},{1,2,2},{2,3},{1,3}}
		

Crossrefs

A321227 Number of connected multiset partitions with multiset density -1 of strongly normal multisets of size n.

Original entry on oeis.org

0, 1, 3, 6, 17, 43, 147, 458, 1729, 6445, 27011
Offset: 0

Views

Author

Gus Wiseman, Oct 31 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
A multiset is normal if it spans an initial interval of positive integers, and strongly normal if in addition its multiplicities are weakly decreasing.

Examples

			The a(1) = 1 through a(4) = 17 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
         {{1},{1}}  {{1,2,3}}      {{1,1,2,2}}
                    {{1},{1,1}}    {{1,1,2,3}}
                    {{1},{1,2}}    {{1,2,3,4}}
                    {{1},{1},{1}}  {{1},{1,1,1}}
                                   {{1,1},{1,1}}
                                   {{1},{1,1,2}}
                                   {{1,1},{1,2}}
                                   {{1},{1,2,2}}
                                   {{1},{1,2,3}}
                                   {{1,2},{1,3}}
                                   {{2},{1,1,2}}
                                   {{1},{1},{1,1}}
                                   {{1},{1},{1,2}}
                                   {{1},{2},{1,2}}
                                   {{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    mensity[c_]:=Total[(Length[Union[#]]-1&)/@c]-Length[Union@@c];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Sum[Length[Select[mps[m],And[mensity[#]==-1,Length[csm[#]]==1]&]],{m,strnorm[n]}],{n,0,8}]

A322140 Number of labeled 2-connected multigraphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 1, 2, 7, 37, 262, 2312, 24338, 296928, 4112957, 63692909, 1089526922, 20389411551, 414146189901, 9070116944468, 212983762029683, 5336570227705763, 142083405456873290, 4004953714929148655, 119128974685786590410, 3728639072095285867881
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

We consider a single edge to be 2-connected, so a(1) = 1.

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 1/(1 - y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018

A322112 Number of non-isomorphic self-dual connected multiset partitions of weight n with no singletons and multiset density -1.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 4, 4, 9, 9
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. A multiset partition is self-dual if it is isomorphic to its dual. For example, {{1,1},{1,2,2},{2,3,3}} is self-dual, as it is isomorphic to its dual {{1,1,2},{2,2,3},{3,3}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(10) = 9 multiset partitions:
  {{11}}  {{111}}  {{1111}}  {{11111}}    {{111111}}    {{1111111}}
                             {{11}{122}}  {{22}{1122}}  {{111}{1222}}
                                                        {{22}{11222}}
                                                        {{11}{12}{233}}
.
  {{11111111}}      {{111111111}}        {{1111111111}}
  {{111}{11222}}    {{1111}{12222}}      {{1111}{112222}}
  {{22}{112222}}    {{22}{1122222}}      {{22}{11222222}}
  {{11}{122}{233}}  {{222}{111222}}      {{222}{1112222}}
                    {{11}{11}{12233}}    {{111}{122}{2333}}
                    {{11}{113}{2233}}    {{22}{113}{23333}}
                    {{12}{111}{2333}}    {{22}{1133}{2233}}
                    {{22}{113}{2333}}    {{33}{33}{112233}}
                    {{12}{13}{22}{344}}  {{11}{14}{223}{344}}
		

Crossrefs

A322399 Number of non-isomorphic 2-edge-connected clutters spanning n vertices.

Original entry on oeis.org

0, 0, 2, 12, 149
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

A clutter is a connected antichain of sets. It is 2-edge-connected if it cannot be disconnected by removing any single edge. Compare to blobs or 2-vertex-connected clutters (A304887).

Examples

			Non-isomorphic representatives of the a(4) = 12 clutters:
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Previous Showing 11-18 of 18 results.