cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A320464 MM-numbers of labeled multi-hypergraphs with no singletons spanning an initial interval of positive integers.

Original entry on oeis.org

1, 13, 113, 169, 377, 611, 1291, 1363, 1469, 1937, 2021, 2117, 2197, 3277, 4537, 4859, 4901, 5249, 5311, 7423, 7943, 8249, 8507, 10933, 12769, 16211, 16403, 16559, 16783, 16837, 17719, 19097, 20443, 20453, 24553, 25181, 25477, 26273, 26969, 27521, 28561, 28717
Offset: 1

Views

Author

Gus Wiseman, Oct 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
     1: {}
    13: {{1,2}}
   113: {{1,2,3}}
   169: {{1,2},{1,2}}
   377: {{1,2},{1,3}}
   611: {{1,2},{2,3}}
  1291: {{1,2,3,4}}
  1363: {{1,3},{2,3}}
  1469: {{1,2},{1,2,3}}
  1937: {{1,2},{3,4}}
  2021: {{1,4},{2,3}}
  2117: {{1,3},{2,4}}
  2197: {{1,2},{1,2},{1,2}}
  3277: {{1,3},{1,2,3}}
  4537: {{1,2},{1,3,4}}
  4859: {{1,4},{1,2,3}}
  4901: {{1,2},{1,2},{1,3}}
  5249: {{1,3},{1,2,4}}
  5311: {{2,3},{1,2,3}}
  7423: {{1,2},{2,3,4}}
  7943: {{1,2},{1,2},{2,3}}
  8249: {{2,4},{1,2,3}}
  8507: {{2,3},{1,2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[10000],And[normQ[primeMS/@primeMS[#]],And@@(And[SquareFreeQ[#],PrimeOmega[#]>1]&/@primeMS[#])]&]

A322110 Number of non-isomorphic connected multiset partitions of weight n that cannot be capped by a tree.

Original entry on oeis.org

1, 1, 3, 6, 15, 32, 86, 216, 628, 1836, 5822
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
The density of a multiset partition is defined to be the sum of numbers of distinct elements in each part, minus the number of parts, minus the total number of distinct elements in the whole partition. A multiset partition is a tree if it has more than one part, is connected, and has density -1. A cap is a certain kind of non-transitive coarsening of a multiset partition. For example, the four caps of {{1,1},{1,2},{2,2}} are {{1,1},{1,2},{2,2}}, {{1,1},{1,2,2}}, {{1,1,2},{2,2}}, {{1,1,2,2}}. - Gus Wiseman, Feb 05 2021

Examples

			The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8).
Non-isomorphic representatives of the a(1) = 1 through a(5) = 32 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
                    {{1},{1,1}}    {{1,2,3,3}}        {{1,2,2,3,3}}
                    {{2},{1,2}}    {{1,2,3,4}}        {{1,2,3,3,3}}
                    {{1},{1},{1}}  {{1},{1,1,1}}      {{1,2,3,4,4}}
                                   {{1,1},{1,1}}      {{1,2,3,4,5}}
                                   {{1},{1,2,2}}      {{1},{1,1,1,1}}
                                   {{1,2},{1,2}}      {{1,1},{1,1,1}}
                                   {{2},{1,2,2}}      {{1},{1,2,2,2}}
                                   {{3},{1,2,3}}      {{1,2},{1,2,2}}
                                   {{1},{1},{1,1}}    {{2},{1,1,2,2}}
                                   {{1},{2},{1,2}}    {{2},{1,2,2,2}}
                                   {{2},{2},{1,2}}    {{2},{1,2,3,3}}
                                   {{1},{1},{1},{1}}  {{2,2},{1,2,2}}
                                                      {{2,3},{1,2,3}}
                                                      {{3},{1,2,3,3}}
                                                      {{4},{1,2,3,4}}
                                                      {{1},{1},{1,1,1}}
                                                      {{1},{1,1},{1,1}}
                                                      {{1},{1},{1,2,2}}
                                                      {{1},{2},{1,2,2}}
                                                      {{2},{1,2},{1,2}}
                                                      {{2},{1,2},{2,2}}
                                                      {{2},{2},{1,2,2}}
                                                      {{2},{3},{1,2,3}}
                                                      {{3},{1,3},{2,3}}
                                                      {{3},{3},{1,2,3}}
                                                      {{1},{1},{1},{1,1}}
                                                      {{1},{2},{2},{1,2}}
                                                      {{2},{2},{2},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Non-isomorphic tree multiset partitions are counted by A321229.
The weak-antichain case is counted by A322117.
The case without singletons is counted by A322118.

Extensions

Corrected by Gus Wiseman, Jan 27 2021

A305081 Heinz numbers of z-trees. Heinz numbers of connected integer partitions with pairwise indivisible parts and z-density -1.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 203, 211, 223, 227, 229
Offset: 1

Views

Author

Gus Wiseman, May 25 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.
The clutter density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)) where omega = A001221.

Examples

			4331 is the Heinz number of {18,20}, which is a z-tree corresponding to the multiset multisystem {{1,2,2},{1,1,3}}.
17927 is the Heinz number of {4,6,45}, which is a z-tree corresponding to the multiset multisystem {{1,1},{1,2},{2,2,3}}.
27391 is the Heinz number of {4,4,6,14}, which is a z-tree corresponding to the multiset multisystem {{1,1},{1,1},{1,2},{1,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]];
    Select[Range[300],And[zens[#]==-1,Length[zsm[primeMS[#]]]==1,Select[Tuples[primeMS[#],2],UnsameQ@@#&&Divisible@@#&]=={}]&]

A305054 If n = Product_i prime(x_i)^k_i, then a(n) = Sum_i k_i * omega(x_i), where omega = A001221 is number of distinct prime factors.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 2, 1, 0, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 1, 3, 2, 1, 2, 2, 1, 2, 2, 1, 3, 0, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 3, 1, 2, 3, 2, 1, 4, 1, 1, 2, 2, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*PrimeNu[PrimePi[p]]]],{n,100}]
  • PARI
    a(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,2]*omega(primepi(f[k,1])));} \\ Michel Marcus, Jun 09 2018

Formula

Totally additive with a(prime(n)) = omega(n).
a(n) = A305053(n) + A001221(n). - Michel Marcus, Jun 09 2018

A305053 If n = Product_i prime(x_i)^k_i, then a(n) = Sum_i k_i * omega(x_i) - omega(n), where omega = A001221 is number of distinct prime factors.

Original entry on oeis.org

0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, -1, 1, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 1, 0, 2, -1, 1, -1, 0, -1, 0, -1, 0, 0, 1, -1, 1, -1, 0, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 1, -1, 1, -1, 1, -1, 0, -1, 0, -1, 1, 0, 1, 0, 1, -1, 0
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Examples

			2925 = prime(2)^2 * prime(3)^2 * prime(6)^1, so a(2925) = 2*1 + 2*1 + 1*2 - 3 = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>(k*PrimeNu[PrimePi[p]]-1)]],{n,100}]
  • PARI
    a(n) = {my(f=factor(n)); sum(k=1, #f~, f[k,2]*omega(primepi(f[k,1]))) - omega(n);} \\ Michel Marcus, Jun 09 2018

Formula

Totally additive with a(prime(n)) = omega(n) - 1.
a(n) = A305054(n) - A001221(n). - Michel Marcus, Jun 09 2018

A305055 Numbers n such that the z-density of the integer partition with Heinz number n is 0.

Original entry on oeis.org

1, 169, 481, 507, 793, 841, 845, 1157, 1183, 1369, 1443, 1469, 1521, 1849, 1963, 2059, 2209, 2257, 2353, 2379, 2405, 2523, 2535, 2899, 3211, 3263, 3277, 3293, 3367, 3471, 3549, 3653, 3721, 3887, 3965, 4107, 4121, 4181, 4225, 4329, 4394, 4407, 4563, 4601, 4667
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The z-density of a multiset S of positive integers is Sum_{s in S} (omega(s) - 1) - omega(lcm(S)) where omega = A001221 is number of distinct prime factors.

Crossrefs

Programs

  • Mathematica
    zens[n_]:=If[n==1,0,Total@Cases[FactorInteger[n],{p_,k_}:>k*(PrimeNu[PrimePi[p]]-1)]-PrimeNu[LCM@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]]]];
    Select[Range[1000],zens[#]==0&]

A320634 Odd numbers whose multiset multisystem is a multiset partition spanning an initial interval of positive integers (odd = no empty sets).

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 21, 27, 35, 37, 39, 45, 49, 53, 57, 61, 63, 65, 69, 75, 81, 89, 91, 95, 105, 111, 113, 117, 131, 133, 135, 141, 143, 145, 147, 151, 159, 161, 165, 169, 171, 175, 183, 185, 189, 195, 207, 223, 225, 243, 245, 247, 251, 259, 265, 267, 273
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The n-th multiset multisystem is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the 78th multiset multisystem is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their multiset multisystems begins:
    1: {}
    3: {{1}}
    7: {{1,1}}
    9: {{1},{1}}
   13: {{1,2}}
   15: {{1},{2}}
   19: {{1,1,1}}
   21: {{1},{1,1}}
   27: {{1},{1},{1}}
   35: {{2},{1,1}}
   37: {{1,1,2}}
   39: {{1},{1,2}}
   45: {{1},{1},{2}}
   49: {{1,1},{1,1}}
   53: {{1,1,1,1}}
   57: {{1},{1,1,1}}
   61: {{1,2,2}}
   63: {{1},{1},{1,1}}
   65: {{2},{1,2}}
   69: {{1},{2,2}}
   75: {{1},{2},{2}}
   81: {{1},{1},{1},{1}}
   89: {{1,1,1,2}}
   91: {{1,1},{1,2}}
   95: {{2},{1,1,1}}
  105: {{1},{2},{1,1}}
  111: {{1},{1,1,2}}
  113: {{1,2,3}}
  117: {{1},{1},{1,2}}
  131: {{1,1,1,1,1}}
  133: {{1,1},{1,1,1}}
  135: {{1},{1},{1},{2}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
    Select[Range[1,100,2],normQ[primeMS/@primeMS[#]]&]

A321271 Number of connected factorizations of n into positive integers > 1 with z-density -1.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 7, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 3, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 7, 5, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2018

Keywords

Comments

These are z-trees (A303837, A305081, A305253, A321279) where we relax the requirement of pairwise indivisibility.
Given a finite multiset S of positive integers greater than 1, let G(S) be the simple labeled graph with vertices the distinct elements of S and with edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. Then S is said to be connected if G(S) is a connected graph.
The z-density of a factorization S is defined to be Sum_{s in S} (omega(s) - 1) - omega(n), where omega = A001221 and n is the product of S.

Examples

			The a(72) = 8 factorizations are (2*2*3*6), (2*2*18), (2*3*12), (2*36), (3*4*6), (3*24), (4*18), (72). Missing from this list but still connected are (2*6*6),(6*12).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[Times@@s];
    Table[Length[Select[facs[n],And[zensity[#]==-1,Length[zsm[#]]==1]&]],{n,100}]

A321680 Number of non-isomorphic weight-n connected antichains (not necessarily strict) of multisets with multiset density -1.

Original entry on oeis.org

1, 1, 3, 4, 9, 14, 39, 80, 216, 538, 1460
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 14 multiset trees:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
                    {{1},{1},{1}}  {{1,2,3,3}}        {{1,2,2,3,3}}
                                   {{1,2,3,4}}        {{1,2,3,3,3}}
                                   {{1,1},{1,1}}      {{1,2,3,4,4}}
                                   {{1,2},{2,2}}      {{1,2,3,4,5}}
                                   {{1,3},{2,3}}      {{1,1},{1,2,2}}
                                   {{1},{1},{1},{1}}  {{1,2},{2,2,2}}
                                                      {{1,2},{2,3,3}}
                                                      {{1,3},{2,3,3}}
                                                      {{1,4},{2,3,4}}
                                                      {{3,3},{1,2,3}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

A321681 Number of non-isomorphic weight-n connected strict antichains of multisets with multiset density -1.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 35, 77, 205, 517, 1399
Offset: 0

Views

Author

Gus Wiseman, Nov 16 2018

Keywords

Comments

The multiset density of a multiset partition is the sum of the numbers of distinct vertices in each part minus the number of parts minus the number of vertices.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 13 trees:
  {{1}}  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
         {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
                  {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                             {{1,2,3,3}}    {{1,2,2,3,3}}
                             {{1,2,3,4}}    {{1,2,3,3,3}}
                             {{1,2},{2,2}}  {{1,2,3,4,4}}
                             {{1,3},{2,3}}  {{1,2,3,4,5}}
                                            {{1,1},{1,2,2}}
                                            {{1,2},{2,2,2}}
                                            {{1,2},{2,3,3}}
                                            {{1,3},{2,3,3}}
                                            {{1,4},{2,3,4}}
                                            {{3,3},{1,2,3}}
		

Crossrefs

Previous Showing 11-20 of 23 results. Next