A335815 Decimal expansion of Sum_{n>=1} 1/z(n)^4 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
0, 0, 0, 0, 3, 7, 1, 7, 2, 5, 9, 9, 2, 8, 5, 2, 6, 9, 6, 8, 6, 1, 6, 4, 8, 6, 6, 2, 6, 2, 4, 7, 1, 7, 4, 0, 5, 7, 8, 4, 5, 3, 6, 5, 0, 8, 8, 9, 7, 3, 0, 0, 8, 3, 2, 1, 3, 5, 7, 5, 5, 0, 6, 3, 7, 1, 8, 4, 6, 1, 3, 3, 2, 9, 8, 8, 4, 5, 7, 2, 8, 1, 3, 7, 2, 9, 7, 6, 0, 3, 5, 7, 2, 3, 3, 7, 4, 2, 4, 2, 9, 6, 0, 2, 8, 3, 7, 0, 0
Offset: 0
Examples
0.0000371725992852696861648662624717405784536508897300...
Links
- André Voros, Zeta functions for the Riemann zeros, arXiv:math/0104051 [math.CV], 2002-2003, p.25 Table 2.
- André Voros, Zeta functions for the Riemann zeros, 2001(2008) p.20 Table 1.
- André Voros, Zeta functions for the Riemann zeros, Annales de l'Institut Fourier, Tome 53 (2003) no. 3, p. 665-699.
- André Voros, Zeta functions over Zeros of the Zeta functions, 2010, p. 153.
Crossrefs
Programs
-
Mathematica
Join[{0,0,0,0},RealDigits[N[-1/12*(D[Log[Zeta[x]],{x,4}]/. x -> 1/2) - 1/24 Pi^4 -(Zeta[4, 1/4] - Zeta[4, 3/4])/64 + 16, 105]][[1]]]
Formula
Equals 16-Pi^4/24+(Zeta[4,3/4]-Zeta[4,1/4])/64-(Log[Zeta[x]]''''[1/2])/24
Comments