cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A331874 Number of semi-lone-child-avoiding locally disjoint rooted trees with n unlabeled leaves.

Original entry on oeis.org

2, 3, 8, 24, 67, 214, 687, 2406, 8672, 32641, 125431, 493039, 1964611
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.

Examples

			The a(1) = 2 through a(4) = 24 trees:
  o    (oo)      (ooo)          (oooo)
  (o)  (o(o))    (o(oo))        (o(ooo))
       ((o)(o))  (oo(o))        (oo(oo))
                 (o(o)(o))      (ooo(o))
                 (o(o(o)))      ((oo)(oo))
                 ((o)(o)(o))    (o(o(oo)))
                 (o((o)(o)))    (o(oo(o)))
                 ((o)((o)(o)))  (oo(o)(o))
                                (oo(o(o)))
                                (o(o)(o)(o))
                                (o(o(o)(o)))
                                (o(o(o(o))))
                                (oo((o)(o)))
                                ((o)(o)(o)(o))
                                ((o(o))(o(o)))
                                ((oo)((o)(o)))
                                (o((o)(o)(o)))
                                (o(o)((o)(o)))
                                (o(o((o)(o))))
                                ((o)((o)(o)(o)))
                                ((o)(o)((o)(o)))
                                (o((o)((o)(o))))
                                (((o)(o))((o)(o)))
                                ((o)((o)((o)(o))))
		

Crossrefs

Not requiring local disjointness gives A050381.
The non-semi version is A316697.
The same trees counted by number of vertices are A331872.
The Matula-Goebel numbers of these trees are A331873.
Lone-child-avoiding rooted trees counted by leaves are A000669.
Semi-lone-child-avoiding rooted trees counted by vertices are A331934.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    slaurt[n_]:=If[n==1,{o,{o}},Join@@Table[Select[Union[Sort/@Tuples[slaurt/@ptn]],disjointQ[Select[#,!AtomQ[#]&]]&],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[slaurt[n]],{n,8}]

A316494 Matula-Goebel numbers of locally disjoint rooted identity trees, meaning no branch overlaps any other branch of the same root.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 41, 47, 55, 58, 62, 66, 79, 82, 93, 94, 101, 109, 110, 113, 123, 127, 137, 141, 143, 145, 155, 158, 165, 179, 186, 202, 205, 211, 218, 226, 246, 254, 257, 271, 274, 282, 286, 290, 293, 310, 317, 327, 330
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff either it is equal to 1, it is a prime number whose prime index already belongs to the sequence, or its prime indices are pairwise coprime, distinct, and already belong to the sequence.

Examples

			The sequence of all locally disjoint rooted identity trees preceded by their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   6: (o(o))
  10: (o((o)))
  11: ((((o))))
  13: ((o(o)))
  15: ((o)((o)))
  22: (o(((o))))
  26: (o(o(o)))
  29: ((o((o))))
  30: (o(o)((o)))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Or[#==1,And[SquareFreeQ[#],Or[PrimeQ[#],CoprimeQ@@primeMS[#]],And@@#0/@primeMS[#]]]&]

A331678 Number of lone-child-avoiding locally disjoint rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

1, 3, 6, 18, 44, 149, 450, 1573, 5352, 19283, 69483, 257206
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings. Locally disjoint means no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex.

Examples

			The a(1) = 1 through a(4) = 18 trees:
  (1)  (2)       (3)            (4)
       (11)      (12)           (13)
       ((1)(1))  (111)          (22)
                 ((1)(2))       (112)
                 ((1)(1)(1))    (1111)
                 ((1)((1)(1)))  ((1)(3))
                                ((2)(2))
                                ((2)(11))
                                ((11)(11))
                                ((1)(1)(2))
                                ((1)((1)(2)))
                                ((2)((1)(1)))
                                ((1)(1)(1)(1))
                                ((11)((1)(1)))
                                ((1)((1)(1)(1)))
                                ((1)(1)((1)(1)))
                                (((1)(1))((1)(1)))
                                ((1)((1)((1)(1))))
		

Crossrefs

The case where all leaves are singletons is A316696.
The case where all leaves are (1) is A316697.
The non-locally disjoint version is A319312.
The case with all atoms equal to 1 is A331679.
The identity tree case is A331686.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    mpti[m_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[mpti/@p]],disjointQ],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[mpti[m]],{m,Sort/@IntegerPartitions[n]}],{n,8}]

A331687 Number of locally disjoint enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 4, 12, 29, 93, 249, 803, 2337, 7480, 23130, 77372, 247598, 834507, 2762222
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

A locally disjoint enriched p-tree of weight n is either the number n itself or a finite sequence of non-overlapping locally disjoint enriched p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(1) = 1 through a(4) = 12 enriched p-trees:
  1  2     3        4
     (11)  (21)     (22)
           (111)    (31)
           ((11)1)  (211)
                    (1111)
                    ((11)2)
                    ((21)1)
                    (2(11))
                    ((11)11)
                    ((111)1)
                    (((11)1)1)
                    ((11)(11))
		

Crossrefs

The orderless version is A316696.
The identity case is A331684.
P-trees are A196545.
Enriched p-trees are A289501.
Locally disjoint identity trees are A316471.
Enriched identity p-trees are A331875.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldep[n_]:=Prepend[Select[Join@@Table[Tuples[ldep/@p],{p,Rest[IntegerPartitions[n]]}],disjointQ[DeleteCases[#,_Integer]]&],n];
    Table[Length[ldep[n]],{n,10}]

A331871 Matula-Goebel numbers of lone-child-avoiding locally disjoint rooted trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

First differs from A320269 in having 1589, the Matula-Goebel number of the tree ((oo)((oo)(oo))).
First differs from A331683 in having 49.
A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.
Lone-child-avoiding means there are no unary branchings.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one and all nonprime numbers whose distinct prime indices are pairwise coprime and already belong to the sequence, where a singleton is always considered to be pairwise coprime. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all lone-child-avoiding locally disjoint rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
The sequence of terms together with their prime indices begins:
     1: {}                  212: {1,1,16}
     4: {1,1}               214: {1,28}
     8: {1,1,1}             224: {1,1,1,1,1,4}
    14: {1,4}               256: {1,1,1,1,1,1,1,1}
    16: {1,1,1,1}           262: {1,32}
    28: {1,1,4}             304: {1,1,1,1,8}
    32: {1,1,1,1,1}         326: {1,38}
    38: {1,8}               343: {4,4,4}
    49: {4,4}               344: {1,1,1,14}
    56: {1,1,1,4}           361: {8,8}
    64: {1,1,1,1,1,1}       392: {1,1,1,4,4}
    76: {1,1,8}             424: {1,1,1,16}
    86: {1,14}              428: {1,1,28}
    98: {1,4,4}             448: {1,1,1,1,1,1,4}
   106: {1,16}              454: {1,49}
   112: {1,1,1,1,4}         512: {1,1,1,1,1,1,1,1,1}
   128: {1,1,1,1,1,1,1}     524: {1,1,32}
   152: {1,1,1,8}           526: {1,56}
   172: {1,1,14}            608: {1,1,1,1,1,8}
   196: {1,1,4,4}           622: {1,64}
		

Crossrefs

Not requiring local disjointness gives A291636.
Not requiring lone-child avoidance gives A316495.
A superset of A320269.
These trees are counted by A331680.
The semi-identity tree version is A331683.
The version containing 2 is A331873.

Programs

  • Mathematica
    msQ[n_]:=n==1||!PrimeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msQ]

Formula

Intersection of A291636 and A316495.

A316502 Matula-Goebel numbers of unlabeled rooted trees with n nodes in which the branches of any node with more than one branch have empty intersection.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff it is 1, or either it is a prime or its prime indices are relatively prime, and its prime indices already belong to the sequence.

Examples

			Sequence of rooted trees preceded by their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: (o(o))
   7: ((oo))
   8: (ooo)
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  16: (oooo)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    go[n_]:=Or[n==1,If[PrimeQ[n],go[PrimePi[n]],And[GCD@@primeMS[n]==1,And@@go/@primeMS[n]]]]
    Select[Range[100],go]

A331783 Number of locally disjoint rooted semi-identity trees with n unlabeled vertices.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 37, 83, 191, 450, 1076, 2610, 6404, 15875, 39676, 99880, 253016, 644524, 1649918, 4242226
Offset: 1

Views

Author

Gus Wiseman, Jan 31 2020

Keywords

Comments

Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct.

Examples

			The a(1) = 1 through a(6) = 17 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o(oo)))
                          ((((o))))  ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

The lone-child-avoiding case is A212804.
The identity tree version is A316471.
The Matula-Goebel numbers of these trees are given by A331682.
Identity trees are A004111.
Semi-identity trees are A306200.
Locally disjoint rooted trees are A316473.
Matula-Goebel numbers of locally disjoint semi-identity trees are A316494.

Programs

  • Mathematica
    disjunsQ[u_]:=Length[u]==1||UnsameQ@@DeleteCases[u,{}]&&Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    ldrsi[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[ldrsi/@c]]]/@IntegerPartitions[n-1],disjunsQ]];
    Table[Length[ldrsi[n]],{n,10}]

A331682 One and all numbers whose prime indices are pairwise coprime and already belong to the sequence, where a singleton is always considered to be coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 47, 48, 51, 52, 53, 55, 56, 58, 59, 60, 62, 64, 66, 67, 68, 70, 71, 74, 76, 77, 79, 80, 82, 85, 86, 88, 89, 93, 94, 95, 96, 101
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Matula-Goebel numbers of locally disjoint rooted semi-identity trees. Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees. The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches (of the root), which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of all locally disjoint rooted semi-identity trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: (o(o))
   7: ((oo))
   8: (ooo)
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  22: (o(((o))))
  24: (ooo(o))
		

Crossrefs

The non-semi identity tree case is A316494.
The enumeration of these trees by vertices is A331783.
Semi-identity trees are counted by A306200.
Matula-Goebel numbers of semi-identity trees are A306202.
Locally disjoint rooted trees are counted by A316473.
Matula-Goebel numbers of locally disjoint rooted trees are A316495.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    deQ[n_]:=n==1||PrimeQ[n]&&deQ[PrimePi[n]]||CoprimeQ@@primeMS[n]&&And@@deQ/@primeMS[n];
    Select[Range[100],deQ]

A331937 a(1) = 1; a(2) = 2; a(n + 1) = 2 * prime(a(n)).

Original entry on oeis.org

1, 2, 6, 26, 202, 2462, 43954, 1063462, 33076174, 1270908802, 58596709306, 3170266564862, 197764800466826, 14024066291995502, 1117378164606478094
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2020

Keywords

Comments

Also Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted identity trees. A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex. It is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. In an identity tree, the branches of any given vertex are all distinct. The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of terms together with their associated trees begins:
     1: o
     2: (o)
     6: (o(o))
    26: (o(o(o)))
   202: (o(o(o(o))))
  2462: (o(o(o(o(o)))))
		

Crossrefs

The semi-identity tree version is A331681.
Not requiring an identity tree gives A331873.
Not requiring local disjointness gives A331963.
Not requiring lone-child-avoidance gives A316494.
MG-numbers of semi-lone-child-avoiding rooted trees are A331935.

Programs

  • Mathematica
    msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msiQ]

Formula

Intersection of A276625 (identity), A316495 (locally disjoint), and A331935 (semi-lone-child-avoiding).

Extensions

a(14)-a(15) from Giovanni Resta, Feb 10 2020

A319271 Number of series-reduced locally non-intersecting aperiodic rooted trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 3, 9, 12, 27, 42, 91, 151, 312, 550, 1099, 2026, 3999, 7527, 14804, 28336, 55641, 107737, 211851, 413508, 814971, 1600512, 3162761, 6241234
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches, and aperiodic if the multiplicities in the multiset of branches directly under any given node are relatively prime, and locally non-intersecting if the branches directly under any given node with more than one branch have empty intersection.

Examples

			The a(8) = 9 rooted trees:
  (o(o(o(o))))
  (o(o(o)(o)))
  (o(ooo(o)))
  (oo(oo(o)))
  (o(o)(o(o)))
  (ooo(o(o)))
  (o(o)(o)(o))
  (ooo(o)(o))
  (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    btrut[n_]:=btrut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[btrut/@c]]]/@IntegerPartitions[n-1],And[Intersection@@#=={},GCD@@Length/@Split[#]==1]&]];
    Table[Length[btrut[n]],{n,30}]
Previous Showing 11-20 of 25 results. Next