cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A324766 Matula-Goebel numbers of recursively anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 40, 44, 46, 49, 50, 51, 53, 57, 59, 62, 63, 64, 67, 68, 71, 73, 77, 79, 80, 81, 83, 85, 87, 88, 92, 93, 95, 97, 99, 100, 103, 109, 115, 118, 121, 124, 125, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

The complement is {6, 12, 13, 14, 15, 18, 24, 26, 28, 30, 36, ...}.
An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of a terminal subtree is a branch of the same subtree.

Examples

			The sequence of recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  10: (o((o)))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  29: ((o((o))))
  31: (((((o)))))
  32: (ooooo)
  33: ((o)(((o))))
  34: (o((oo)))
  35: (((o))(oo))
  40: (ooo((o)))
  44: (oo(((o))))
  46: (o((o)(o)))
  49: ((oo)(oo))
  50: (o((o))((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totantiQ[n_]:=And[Intersection[Union@@primeMS/@primeMS[n],primeMS[n]]=={},And@@totantiQ/@primeMS[n]];
    Select[Range[100],totantiQ]

A317787 Number of locally nonintersecting rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 8, 18, 40, 95, 227, 557, 1382, 3485, 8865, 22790, 59022, 153972, 404066, 1066236, 2826885, 7527411, 20121154
Offset: 1

Views

Author

Gus Wiseman, Aug 07 2018

Keywords

Comments

An unlabeled rooted tree is locally nonintersecting if there is no common subbranch to all branches directly under any given node.

Examples

			The a(6) = 18 locally nonintersecting rooted trees:
  (((((o)))))
  ((((oo))))
  (((o(o))))
  ((o((o))))
  (o(((o))))
  ((o)((o)))
  (((ooo)))
  ((o(oo)))
  ((oo(o)))
  (o((oo)))
  (o(o(o)))
  (oo((o)))
  (o(o)(o))
  ((oooo))
  (o(ooo))
  (oo(oo))
  (ooo(o))
  (ooooo)
Missing from this list are (((o)(o))) and ((o)(oo)).
		

Crossrefs

Programs

  • Mathematica
    rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,Intersection@@#=={}]&],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[rurt[n]],{n,10}]

Extensions

a(16)-a(21) from Robert Price, Sep 16 2018

A316501 Number of unlabeled rooted trees with n nodes in which the branches of any node with more than one distinct branch have empty intersection.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 45, 103, 250, 611, 1528, 3853, 9875, 25481, 66382, 174085, 459541, 1219462
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Examples

			The a(6) = 19 rooted trees:
  (((((o)))))
  ((((oo))))
  (((o(o))))
  (((ooo)))
  ((o((o))))
  ((o(oo)))
  (((o)(o)))
  ((oo(o)))
  ((oooo))
  (o(((o))))
  (o((oo)))
  (o(o(o)))
  (o(ooo))
  ((o)((o)))
  (oo((o)))
  (oo(oo))
  (o(o)(o))
  (ooo(o))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],Or[Length[Union[#]]==1,Intersection@@#=={}]&]];
    Table[Length[strut[n]],{n,15}]

A316503 Matula-Goebel numbers of unlabeled rooted identity trees with n nodes in which the branches of any node with more than one branch have empty intersection.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 41, 47, 55, 58, 62, 66, 78, 79, 82, 93, 94, 101, 109, 110, 113, 123, 127, 130, 137, 141, 143, 145, 155, 158, 165, 174, 179, 186, 195, 202, 205, 211, 218, 226, 246, 254, 257, 271, 274, 282, 286, 290, 293
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Examples

			Sequence of rooted identity trees preceded by their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   6: (o(o))
  10: (o((o)))
  11: ((((o))))
  13: ((o(o)))
  15: ((o)((o)))
  22: (o(((o))))
  26: (o(o(o)))
  29: ((o((o))))
  30: (o(o)((o)))
  31: (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Or[#==1,And[SquareFreeQ[#],Or[PrimeQ[#],GCD@@primeMS[#]==1],And@@#0/@primeMS[#]]]&]

A324841 Matula-Goebel numbers of fully recursively anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 35, 49, 51, 53, 57, 59, 63, 64, 67, 73, 77, 81, 83, 85, 95, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 149, 153, 159, 161, 171, 175, 177, 187, 189, 201, 209, 217, 227, 233, 241, 243, 245
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree.

Examples

			The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  49: ((oo)(oo))
  51: ((o)((oo)))
  53: ((oooo))
  57: ((o)(ooo))
  59: ((((oo))))
  63: ((o)(o)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]];
    Select[Range[100],fratQ]

A317786 Matula-Goebel numbers of locally connected rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 23, 25, 27, 31, 81, 83, 97, 103, 115, 121, 125, 127, 243, 419, 431, 509, 515, 529, 563, 575, 625, 631, 661, 691, 709, 729, 961, 1067, 1331, 1543, 2095, 2187, 2369, 2575, 2645, 2875, 2897, 3001, 3125, 3637, 3691, 3803, 4091, 4201, 4637, 4663
Offset: 1

Views

Author

Gus Wiseman, Aug 07 2018

Keywords

Comments

An unlabeled rooted tree is locally connected if the branches directly under any given node are connected as a hypergraph.

Examples

			The sequence of locally connected trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   5: (((o)))
   9: ((o)(o))
  11: ((((o))))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  81: ((o)(o)(o)(o))
  83: ((((o)(o))))
  97: ((((o))((o))))
		

Crossrefs

Programs

  • Mathematica
    multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[Length[csm[primeMS/@primeMS[n]]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[1000],rupQ[#]&]

A317789 Matula-Goebel numbers of rooted trees that are not locally nonintersecting.

Original entry on oeis.org

9, 21, 23, 25, 27, 39, 46, 49, 57, 63, 65, 69, 73, 81, 83, 87, 91, 92, 97, 103, 111, 115, 117, 121, 125, 129, 133, 138, 146, 147, 159, 161, 166, 167, 169, 171, 183, 184, 185, 189, 194, 199, 203, 206, 207, 213, 219, 227, 230, 235, 237, 243, 247, 249, 253, 259
Offset: 1

Views

Author

Gus Wiseman, Aug 07 2018

Keywords

Comments

An unlabeled rooted tree is locally nonintersecting if there is no common subbranch to all branches directly under any given node.

Examples

			The sequence of rooted trees that are not locally nonintersecting together with their Matula-Goebel numbers begins:
   9: ((o)(o))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  39: ((o)(o(o)))
  46: (o((o)(o)))
  49: ((oo)(oo))
  57: ((o)(ooo))
  63: ((o)(o)(oo))
  65: (((o))(o(o)))
  69: ((o)((o)(o)))
  73: (((o)(oo)))
  81: ((o)(o)(o)(o))
  83: ((((o)(o))))
  87: ((o)(o((o))))
  91: ((oo)(o(o)))
  92: (oo((o)(o)))
  97: ((((o))((o))))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],!rupQ[#]&]
Showing 1-7 of 7 results.