A330224
Number of achiral integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 30, 32, 43, 46, 57, 64, 79, 83, 103, 107, 130, 141, 162, 171, 205, 214, 245, 258, 297, 307, 357, 373, 423, 441, 493, 513, 591, 607, 674, 702, 790, 817, 917, 938, 1040, 1078, 1186, 1216, 1362, 1395, 1534, 1580, 1738, 1779, 1956
Offset: 0
The a(1) = 1 through a(7) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (52)
(111) (31) (41) (42) (61)
(211) (221) (51) (331)
(1111) (311) (222) (421)
(2111) (321) (511)
(11111) (411) (2221)
(2211) (3211)
(3111) (4111)
(21111) (22111)
(111111) (31111)
(211111)
(1111111)
The fully-chiral version is
A330228.
The Heinz numbers of these partitions are given by
A330232.
Achiral set-systems are counted by
A083323.
BII-numbers of achiral set-systems are
A330217.
Non-isomorphic achiral multiset partitions are
A330223.
Achiral factorizations are
A330234.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
Table[Length[Select[IntegerPartitions[n],Length[graprms[primeMS/@#]]==1&]],{n,0,30}]
A319566
Number of non-isomorphic connected T_0 set systems of weight n.
Original entry on oeis.org
1, 1, 0, 1, 2, 3, 8, 17, 41, 103, 276
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(6) = 8 set systems:
1: {{1}}
3: {{2},{1,2}}
4: {{1,3},{2,3}}
{{1},{2},{1,2}}
5: {{2},{3},{1,2,3}}
{{2},{1,3},{2,3}}
{{3},{1,3},{2,3}}
6: {{3},{1,4},{2,3,4}}
{{3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{2},{3},{1,2,3}}
{{1},{2},{1,3},{2,3}}
{{2},{3},{1,3},{2,3}}
A326945
Number of T_0 sets of subsets of {1..n} that are closed under intersection.
Original entry on oeis.org
2, 4, 12, 96, 4404, 2725942, 151906396568, 28175293281055562650
Offset: 0
The a(0) = 2 through a(2) = 12 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{},{1}}
{{},{2}}
{{1},{1,2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{1},{1,2}}
{{},{2},{1,2}}
{{},{1},{2},{1,2}}
The version not closed under intersection is
A326941.
The case without empty edges is
A326959.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326949
Number of unlabeled T_0 sets of subsets of {1..n}.
Original entry on oeis.org
2, 4, 10, 68, 3838, 37320356
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(2) = 10 sets of sets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{},{1}}
{{1},{2}}
{{2},{1,2}}
{{},{1},{2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The covering case is
A326942 (first differences).
The case without empty edges is
A326946.
Cf.
A000371,
A000612,
A003181,
A059052,
A245567,
A316978,
A319559,
A319564,
A319637,
A326939,
A326940.
A326950
Number of T_0 antichains of nonempty subsets of {1..n}.
Original entry on oeis.org
1, 2, 4, 12, 107, 6439, 7726965, 2414519001532, 56130437161079183223017, 286386577668298409107773412840148848120595
Offset: 0
The a(0) = 1 through a(3) = 12 antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{1},{2}} {{3}}
{{1},{2}}
{{1},{3}}
{{2},{3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1},{2},{3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
Antichains of nonempty sets are
A014466.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],stableQ[#,SubsetQ]&&UnsameQ@@dual[#]&]],{n,0,3}]
A319728
Number of strict T_0 integer partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 4, 6, 8, 9, 10, 14, 16, 19, 25, 31, 34, 41, 49, 59, 72, 81, 94, 113, 133, 152, 179, 209, 239, 273, 315, 366, 422, 478, 548, 627, 711, 812, 926, 1051, 1185, 1340, 1514, 1718, 1945, 2179, 2444, 2757, 3095, 3465, 3892, 4362, 4865, 5427, 6068
Offset: 0
The a(11) = 10 integer partitions are (11), (7,4), (8,3), (9,2), (5,4,2), (6,3,2), (6,4,1), (7,3,1), (8,2,1), (5,3,2,1). Missing from this list are (6,5) and (10,1).
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@dual[primeMS/@#]&]],{n,60}]
A326942
Number of unlabeled T_0 sets of subsets of {1..n} that cover all n vertices.
Original entry on oeis.org
2, 2, 6, 58, 3770
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(2) = 6 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{2},{1,2}}
{{},{1},{2}}
{{},{2},{1,2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A319637.
The non-covering version is
A326949 (partial sums).
Cf.
A000371,
A003180,
A055621,
A059201,
A316978,
A319559,
A319564,
A326907,
A326941,
A326943,
A326946.
A326948
Number of connected T_0 set-systems on n vertices.
Original entry on oeis.org
1, 1, 3, 86, 31302, 2146841520, 9223371978880250448, 170141183460469231408869283342774399392, 57896044618658097711785492504343953919148780260559635830120038252613826101856
Offset: 0
The a(3) = 86 set-systems:
{12}{13} {1}{2}{13}{123} {1}{2}{3}{13}{23}
{12}{23} {1}{2}{23}{123} {1}{2}{3}{13}{123}
{13}{23} {1}{3}{12}{13} {1}{2}{3}{23}{123}
{1}{2}{123} {1}{3}{12}{23} {1}{2}{12}{13}{23}
{1}{3}{123} {1}{3}{12}{123} {1}{2}{12}{13}{123}
{1}{12}{13} {1}{3}{13}{23} {1}{2}{12}{23}{123}
{1}{12}{23} {1}{3}{13}{123} {1}{2}{13}{23}{123}
{1}{12}{123} {1}{3}{23}{123} {1}{3}{12}{13}{23}
{1}{13}{23} {1}{12}{13}{23} {1}{3}{12}{13}{123}
{1}{13}{123} {1}{12}{13}{123} {1}{3}{12}{23}{123}
{2}{3}{123} {1}{12}{23}{123} {1}{3}{13}{23}{123}
{2}{12}{13} {1}{13}{23}{123} {1}{12}{13}{23}{123}
{2}{12}{23} {2}{3}{12}{13} {2}{3}{12}{13}{23}
{2}{12}{123} {2}{3}{12}{23} {2}{3}{12}{13}{123}
{2}{13}{23} {2}{3}{12}{123} {2}{3}{12}{23}{123}
{2}{23}{123} {2}{3}{13}{23} {2}{3}{13}{23}{123}
{3}{12}{13} {2}{3}{13}{123} {2}{12}{13}{23}{123}
{3}{12}{23} {2}{3}{23}{123} {3}{12}{13}{23}{123}
{3}{13}{23} {2}{12}{13}{23} {1}{2}{3}{12}{13}{23}
{3}{13}{123} {2}{12}{13}{123} {1}{2}{3}{12}{13}{123}
{3}{23}{123} {2}{12}{23}{123} {1}{2}{3}{12}{23}{123}
{12}{13}{23} {2}{13}{23}{123} {1}{2}{3}{13}{23}{123}
{12}{13}{123} {3}{12}{13}{23} {1}{2}{12}{13}{23}{123}
{12}{23}{123} {3}{12}{13}{123} {1}{3}{12}{13}{23}{123}
{13}{23}{123} {3}{12}{23}{123} {2}{3}{12}{13}{23}{123}
{1}{2}{3}{123} {3}{13}{23}{123} {1}{2}{3}{12}{13}{23}{123}
{1}{2}{12}{13} {12}{13}{23}{123}
{1}{2}{12}{23} {1}{2}{3}{12}{13}
{1}{2}{12}{123} {1}{2}{3}{12}{23}
{1}{2}{13}{23} {1}{2}{3}{12}{123}
The same with covering instead of connected is
A059201, with unlabeled version
A319637.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&UnsameQ@@dual[#]&]],{n,0,3}]
A327016
BII-numbers of finite T_0 topologies without their empty set.
Original entry on oeis.org
0, 1, 2, 5, 6, 7, 8, 17, 24, 25, 34, 40, 42, 69, 70, 71, 81, 85, 87, 88, 89, 93, 98, 102, 103, 104, 106, 110, 120, 121, 122, 127, 128, 257, 384, 385, 514, 640, 642, 1029, 1030, 1031, 1281, 1285, 1287, 1408, 1409, 1413, 1538, 1542, 1543, 1664, 1666, 1670, 1920
Offset: 1
The sequence of all finite T_0 topologies without their empty set together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
69: {{1},{1,2},{1,2,3}}
70: {{2},{1,2},{1,2,3}}
71: {{1},{2},{1,2},{1,2,3}}
81: {{1},{1,3},{1,2,3}}
85: {{1},{1,2},{1,3},{1,2,3}}
87: {{1},{2},{1,2},{1,3},{1,2,3}}
88: {{3},{1,3},{1,2,3}}
BII-numbers of topologies without their empty set are
A326876.
BII-numbers of T_0 set-systems are
A326947.
Cf.
A001930,
A048793,
A306445,
A316978,
A319564,
A326031,
A326872,
A326875,
A326939,
A326941,
A326959.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Select[Range[0,1000],UnsameQ@@dual[bpe/@bpe[#]]&&SubsetQ[bpe/@bpe[#],Union[Union@@@Tuples[bpe/@bpe[#],2],DeleteCases[Intersection@@@Tuples[bpe/@bpe[#],2],{}]]]&]
A322846
Squarefree numbers whose prime indices have no equivalent primes.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 22, 23, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 46, 51, 53, 55, 57, 59, 61, 62, 65, 66, 67, 69, 70, 71, 74, 77, 78, 82, 83, 85, 87, 89, 91, 93, 95, 97, 102, 103, 105, 106, 107, 109, 110, 111, 114, 115, 118, 119
Offset: 1
The sequence of all strict T_0 multiset multisystems together with their MM-numbers begins:
1: {}
2: {{}}
3: {{1}}
5: {{2}}
6: {{},{1}}
7: {{1,1}}
10: {{},{2}}
11: {{3}}
14: {{},{1,1}}
15: {{1},{2}}
17: {{4}}
19: {{1,1,1}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
30: {{},{1},{2}}
31: {{5}}
33: {{1},{3}}
34: {{},{4}}
35: {{2},{1,1}}
37: {{1,1,2}}
38: {{},{1,1,1}}
39: {{1},{1,2}}
Cf.
A000009,
A005117,
A056239,
A059201,
A112798,
A302242,
A302505,
A316978,
A316979,
A316983,
A319558,
A319564,
A319728,
A322847.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
Select[Range[100],And[SquareFreeQ[#],UnsameQ@@dual[primeMS/@primeMS[#]]]&]
Comments