cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A320110 Restricted growth sequence transform of function f: f(1) = 0, f(n) = A046523(A252463(n)) for n > 1.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 3, 4, 4, 3, 3, 5, 3, 3, 5, 6, 3, 4, 3, 5, 5, 3, 3, 7, 4, 3, 6, 5, 3, 5, 3, 8, 5, 3, 5, 7, 3, 3, 5, 7, 3, 5, 3, 5, 7, 3, 3, 9, 4, 4, 5, 5, 3, 6, 5, 7, 5, 3, 3, 10, 3, 3, 7, 11, 5, 5, 3, 5, 5, 5, 3, 12, 3, 3, 7, 5, 5, 5, 3, 9, 8, 3, 3, 10, 5, 3, 5, 7, 3, 7, 5, 5, 5, 3, 5, 13, 3, 4, 7, 7, 3, 5, 3, 7, 10
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A320111(i) = A320111(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A320110aux(n) = if(1==n,0,A046523(A252463(n)));
    v320110 = rgs_transform(vector(up_to,n,A320110aux(n)));
    A320110(n) = v320110[n];

A323080 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(1)=0, and f(n) = A252463(n) for n > 1.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 6, 6, 5, 7, 8, 9, 7, 8, 10, 11, 12, 13, 14, 14, 9, 15, 16, 12, 11, 10, 17, 18, 19, 20, 21, 17, 13, 19, 22, 23, 15, 24, 25, 26, 27, 28, 24, 16, 18, 29, 30, 31, 31, 32, 32, 33, 34, 27, 35, 36, 20, 37, 38, 39, 23, 25, 40, 41, 41, 42, 36, 43, 44, 45, 46, 47, 26, 22, 43, 44, 48, 49, 50, 21, 28, 51, 52, 48, 29, 53, 54, 55, 56, 57, 53, 58, 33, 59, 60, 61, 62, 35, 63, 64, 59, 65, 66, 38
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A252463(i) = A252463(j) => A285727(i) = A285727(j),
a(i) = a(j) => A320110(i) = A320110(j) => A320111(i) = A320111(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A323080aux(n) = if(1==n,0,A252463(n));
    v323080 = rgs_transform(vector(up_to,n,A323080aux(n)));
    A323080(n) = v323080[n];

A338117 Number of partitions of n into two parts (s,t) such that (t-s) | n, where s < t.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 3, 3, 1, 2, 1, 3, 3, 1, 1, 5, 2, 1, 3, 3, 1, 3, 1, 4, 3, 1, 3, 5, 1, 1, 3, 5, 1, 3, 1, 3, 5, 1, 1, 7, 2, 2, 3, 3, 1, 3, 3, 5, 3, 1, 1, 7, 1, 1, 5, 5, 3, 3, 1, 3, 3, 3, 1, 8, 1, 1, 5, 3, 3, 3, 1, 7, 4, 1, 1, 7, 3, 1, 3, 5, 1, 5, 3, 3, 3
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 10 2020

Keywords

Comments

Apparently a(n) = A320111(n) - 1. - Hugo Pfoertner, Oct 30 2020
The above observation is true, which can be seen from the formula A320111(2n) = A000005(n), A320111(2n+1) = A000005(2n+1). For odd numbers, the difference (t-s) may range over all the divisors of n except the n itself, and for even numbers the difference (t-s) [which is always even] may range only over the even divisors of n, except the n itself. Note that A000005(2n) = A000005(n) + A001227(n). - Antti Karttunen, Dec 12 2021

Examples

			a(8) = 2; The partitions of 8 into two parts (s,t) such that s < t are (7,1), (6,2), (5,3) and (4,4). Only the partitions (6,2) and (5,3) have (6-2) | 8 and (5-3) | 8, so a(8) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(1 - Ceiling[n/(n - 2 i)] + Floor[n/(n - 2 i)]), {i, Floor[(n - 1)/2]}], {n, 100}]
  • PARI
    for(n=1,85,my(j=0);forpart(x=n,if(#x==2,if(x[2]!=x[1]&&!(n%(x[2]-x[1])),j++)));print1(j,", ")) \\ Hugo Pfoertner, Oct 30 2020
    
  • PARI
    A338117(n) = sum(s=1,(n-1)\2,!(n%(n-(2*s)))); \\ Antti Karttunen, Dec 12 2021

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} (1 - ceiling(n/(n-2*i)) + floor(n/(n-2*i))).

A366362 Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.

Original entry on oeis.org

1, 0, 4, 5, 0, 4, 0, 8, 0, 8, 21, 0, 0, 0, 4, 0, 20, 0, 0, 0, 16, 40, 0, 0, 0, 0, 0, 9, 0, 32, 0, 16, 0, 0, 0, 16, 45, 0, 24, 0, 0, 0, 0, 0, 12, 0, 84, 0, 0, 0, 0, 0, 0, 0, 16, 111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32
Offset: 1

Views

Author

Mats Granvik, Oct 08 2023

Keywords

Comments

Row n appears to have sum n^2. T(prime(m),1) = A366346(m). The number of nonzero terms in row n appears to be A320111(n).

Examples

			{
{1}, = 1^2
{0, 4}, = 2^2
{5, 0, 4}, = 3^2
{0, 8, 0, 8}, = 4^2
{21, 0, 0, 0, 4}, = 5^2
{0, 20, 0, 0, 0, 16}, = 6^2
{40, 0, 0, 0, 0, 0, 9}, = 7^2
{0, 32, 0, 16, 0, 0, 0, 16}, = 8^2
{45, 0, 24, 0, 0, 0, 0, 0, 12}, = 9^2
{0, 84, 0, 0, 0, 0, 0, 0, 0, 16}, = 10^2
{111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 11^2
{0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32} = 12^2
}
		

Crossrefs

Programs

  • Mathematica
    f = x^3 - x^2 - y^2 - y; nn = 12; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]

Formula

T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.
Conjecture: T(n,n) = A060457(n).

A318889 a(n) = A001065(n) - A001065(A252463(n)).

Original entry on oeis.org

0, 1, 0, 2, 0, 5, 0, 4, 1, 7, 0, 10, 0, 9, 3, 8, 0, 17, 0, 14, 3, 13, 0, 20, 2, 15, 6, 18, 0, 33, 0, 16, 5, 19, 4, 34, 0, 21, 3, 28, 0, 43, 0, 26, 17, 25, 0, 40, 2, 37, 5, 30, 0, 53, 6, 36, 3, 31, 0, 66, 0, 33, 19, 32, 4, 63, 0, 38, 5, 61, 0, 68, 0, 39, 28, 42, 6, 73, 0, 56, 25, 43, 0, 86, 6, 45, 7, 52, 0, 111, 4, 50, 3, 49, 4, 80, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A001065(n) - A319699(n) = A001065(n) - A001065(A252463(n)).

A366563 Number of nonzero terms in row n of A366561(n,k).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 3, 4, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 3, 4, 4, 4, 2, 8, 2, 5, 4, 4, 4, 6, 2, 4, 4, 6, 2, 8, 2, 4, 6, 4, 2, 8, 3, 6, 4, 4, 2, 8, 4, 6, 4, 4, 2, 8, 2, 4, 6, 6, 4, 8, 2, 4, 4, 8, 2, 9, 2, 4
Offset: 1

Views

Author

Mats Granvik, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 74; f = x^2 - y^2; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Table[Sum[Abs[Sign[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}]]], {k, 1, n}], {n, 1, nn}]

Formula

a(n) = Sum_{k=1..n} abs(sign(A366561(n,k))).

A366799 Number of divisors d of n that are not of the form 4k+2, as permuted by the Doudna sequence.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 4, 4, 3, 3, 4, 4, 2, 2, 4, 4, 4, 4, 6, 6, 3, 3, 6, 6, 4, 4, 5, 5, 2, 2, 4, 4, 4, 4, 6, 6, 4, 4, 8, 8, 6, 6, 8, 8, 3, 3, 6, 6, 6, 6, 9, 9, 4, 4, 8, 8, 5, 5, 6, 6, 2, 2, 4, 4, 4, 4, 6, 6, 4, 4, 8, 8, 6, 6, 8, 8, 4, 4, 8, 8, 8, 8, 12, 12, 6, 6, 12, 12, 8, 8, 10, 10, 3, 3, 6, 6, 6, 6, 9, 9
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Crossrefs

Cf. A005940, A320111, A366800 (rgs-transform).
Cf. also A366797.

Programs

Formula

a(n) = A320111(A005940(1+n)).

A366800 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366799(i) = A366799(j) for all i, j >= 0, where A366799 is the number of divisors d of n that are not of the form 4k+2, as permuted by the Doudna sequence.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 4, 4, 3, 3, 4, 4, 2, 2, 4, 4, 4, 4, 5, 5, 3, 3, 5, 5, 4, 4, 6, 6, 2, 2, 4, 4, 4, 4, 5, 5, 4, 4, 7, 7, 5, 5, 7, 7, 3, 3, 5, 5, 5, 5, 8, 8, 4, 4, 7, 7, 6, 6, 5, 5, 2, 2, 4, 4, 4, 4, 5, 5, 4, 4, 7, 7, 5, 5, 7, 7, 4, 4, 7, 7, 7, 7, 9, 9, 5, 5, 9, 9, 7, 7, 10, 10, 3, 3, 5, 5, 5, 5, 8, 8
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2023

Keywords

Comments

Restricted growth sequence transform of A366799.

Crossrefs

Cf. also A366798.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A320111(n) = sumdiv(n,d,(2!=(d%4)));
    A366799(n) = A320111(A005940(1+n));
    v366800 = rgs_transform(vector(1+up_to,n,A366799(n-1)));
    A366800(n) = v366800[1+n];
Previous Showing 11-18 of 18 results.