cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A358332 Numbers whose prime indices have arithmetic and geometric mean differing by one.

Original entry on oeis.org

57, 228, 1064, 1150, 1159, 2405, 3249, 7991, 29785, 29999, 30153, 35378, 51984, 82211, 133931, 185193, 187039, 232471, 242592, 374599, 404225, 431457, 685207, 715129, 927288, 1132096, 1165519, 1322500, 1343281, 1555073, 1872413, 2016546, 2873687, 3468319, 4266421, 4327344
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      57: {2,8}
     228: {1,1,2,8}
    1064: {1,1,1,4,8}
    1150: {1,3,3,9}
    1159: {8,18}
    2405: {3,6,12}
    3249: {2,2,8,8}
    7991: {18,32}
   29785: {3,4,9,12}
   29999: {32,50}
   30153: {2,8,9,9}
   35378: {1,4,4,8,8}
   51984: {1,1,1,1,2,2,8,8}
   82211: {50,72}
  133931: {4,8,8,16}
  185193: {2,2,2,8,8,8}
  187039: {72,98}
  232471: {12,18,27}
		

Crossrefs

The partitions with these Heinz numbers are counted by A358331.
A000040 lists the primes.
A001222 counts prime indices, distinct A001221.
A003963 multiplies together prime indices.
A056239 adds up prime indices.
A067538 counts partitions with integer average, ranked by A316413.
A067539 counts partitions with integer geometric mean, ranked by A326623.
A078175 lists numbers whose prime factors have integer average.
A320322 counts partitions whose product is a perfect power.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],Mean[primeMS[#]]==1+GeometricMean[primeMS[#]]&]
  • PARI
    isok(k) = if (k>1, my(f=factor(k), vf=List()); for (i=1, #f~, for (j=1, f[i,2], listput(vf, primepi(f[i,1])))); my(v = Vec(vf)); vecsum(v)/#v == 1 + sqrtn(vecprod(v), #v);); \\ Michel Marcus, Nov 11 2022

Extensions

More terms from Michel Marcus, Nov 11 2022

A330106 Number of integer partitions of n whose product is a powerful number.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 5, 5, 9, 11, 18, 19, 30, 36, 51, 62, 87, 104, 141, 171, 225, 271, 349, 419, 534, 643, 804, 965, 1197, 1431, 1766, 2106, 2571, 3063, 3719, 4410, 5325, 6305, 7567, 8939, 10678, 12572, 14961, 17567, 20804, 24389, 28775, 33626, 39551, 46106
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Examples

			The a(4) = 2 through a(10) = 18 partitions:
  (4)   (41)   (33)    (331)    (8)       (9)        (55)
  (22)  (221)  (42)    (421)    (44)      (81)       (82)
               (222)   (2221)   (422)     (333)      (91)
               (411)   (4111)   (2222)    (441)      (433)
               (2211)  (22111)  (3311)    (4221)     (442)
                                (4211)    (22221)    (811)
                                (22211)   (33111)    (3322)
                                (41111)   (42111)    (3331)
                                (221111)  (222111)   (4222)
                                          (411111)   (4411)
                                          (2211111)  (22222)
                                                     (42211)
                                                     (222211)
                                                     (331111)
                                                     (421111)
                                                     (2221111)
                                                     (4111111)
                                                     (22111111)
		

Crossrefs

The strict version is A330216.
Powerful numbers are A001694.
Partitions whose product is a perfect power are A320322.

Programs

  • Mathematica
    powQ[n_]:=Min@@Last/@FactorInteger[n]>1;
    Table[Length[Select[IntegerPartitions[n],powQ[Times@@#]&]],{n,0,30}]

A330216 Number of strict integer partitions of n whose product is a powerful number.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 3, 4, 5, 7, 8, 8, 10, 12, 12, 15, 18, 19, 20, 24, 25, 28, 38, 41, 43, 50, 55, 63, 79, 85, 88, 104, 116, 124, 143, 157, 173, 197, 214, 235, 274, 294, 319, 363, 393, 430, 487, 529, 577, 647, 692, 752, 856, 925, 992, 1099
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2019

Keywords

Examples

			The a(n) partitions for n = 4, 9, 12, 13, 16, 17, 18:
  (4)  (9)    (8,4)      (9,4)    (16)         (9,8)      (12,6)
       (8,1)  (9,3)      (6,4,3)  (9,4,3)      (16,1)     (16,2)
              (6,3,2,1)  (8,4,1)  (12,3,1)     (8,6,3)    (9,8,1)
                         (9,3,1)  (9,4,2,1)    (9,6,2)    (8,6,3,1)
                                  (6,4,3,2,1)  (10,5,2)   (9,4,3,2)
                                               (12,3,2)   (9,6,2,1)
                                               (9,4,3,1)  (10,5,2,1)
                                                          (12,3,2,1)
		

Crossrefs

The non-strict version is A330106.
Powerful numbers are A001694.
Partitions whose product is a perfect power are A320322.

Programs

  • Mathematica
    powQ[n_]:=Min@@Last/@FactorInteger[n]>1;
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&powQ[Times@@#]&]],{n,0,30}]

A339555 Number of subsets of {2..n} such that the product of the elements is a perfect power.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 5, 5, 11, 25, 41, 41, 80, 80, 144, 284, 568, 568, 1147, 1147, 2339, 4667, 8763, 8763, 17548, 35196, 67964, 135918, 273806, 273806, 548956, 548956, 1097974, 2194294, 4291446, 8608698, 17216783, 17216783, 33993999, 67979983, 135956742
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 08 2020

Keywords

Examples

			a(8) = 11 subsets: {}, {4}, {8}, {2, 4}, {2, 8}, {4, 8}, {2, 3, 6}, {2, 4, 8}, {3, 6, 8}, {2, 3, 4, 6} and {3, 4, 6, 8}.
		

Crossrefs

Formula

a(p) = a(p-1) for p prime.

Extensions

a(25)-a(40) from Alois P. Heinz, Dec 08 2020
Previous Showing 31-34 of 34 results.