cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A379307 Positive integers whose prime indices include no squarefree numbers.

Original entry on oeis.org

1, 7, 19, 23, 37, 49, 53, 61, 71, 89, 97, 103, 107, 131, 133, 151, 161, 173, 193, 197, 223, 227, 229, 239, 251, 259, 263, 281, 307, 311, 337, 343, 359, 361, 371, 379, 383, 409, 419, 427, 433, 437, 457, 463, 479, 497, 503, 521, 523, 529, 541, 569, 593, 613, 623
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    7: {4}
   19: {8}
   23: {9}
   37: {12}
   49: {4,4}
   53: {16}
   61: {18}
   71: {20}
   89: {24}
   97: {25}
  103: {27}
  107: {28}
  131: {32}
  133: {4,8}
  151: {36}
  161: {4,9}
  173: {40}
		

Crossrefs

Partitions of this type are counted by A114374, strict A256012.
Positions of zero in A379306.
For a unique squarefree part we have A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==0&]

A379310 Number of nonsquarefree prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 0.
The prime indices of 70 are {1,3,4}, so a(70) = 1.
The prime indices of 98 are {1,4,4}, so a(98) = 2.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 2.
		

Crossrefs

Positions of first appearances are A000420.
Positions of zero are A302478, counted by A073576 (strict A087188).
No squarefree parts: A379307, counted by A114374 (strict A256012).
One squarefree part: A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],Not@*SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A107078(k) = 1 - A008966(k).

A379306 Number of squarefree prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 0, 3, 1, 2, 0, 4, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 1, 4, 0, 1, 2, 4, 1, 2, 1, 3, 3, 1, 1, 5, 0, 3, 2, 3, 0, 4, 2, 3, 1, 2, 1, 4, 0, 2, 2, 6, 2, 3, 1, 3, 1, 2, 0, 5, 1, 1, 3, 2, 1, 3, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 2.
The prime indices of 70 are {1,3,4}, so a(70) = 2.
The prime indices of 98 are {1,4,4}, so a(98) = 1.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 3.
		

Crossrefs

Positions of first appearances are A000079.
Positions of zero are A379307, counted by A114374 (strict A256012).
Positions of one are A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A008966(k).

A379317 Positive integers with a unique even prime index.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 15, 19, 24, 26, 28, 29, 30, 33, 35, 37, 38, 43, 48, 51, 52, 53, 56, 58, 60, 61, 65, 66, 69, 70, 71, 74, 75, 76, 77, 79, 86, 89, 93, 95, 96, 101, 102, 104, 106, 107, 112, 113, 116, 119, 120, 122, 123, 130, 131, 132, 138, 139, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   3: {2}
   6: {1,2}
   7: {4}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  19: {8}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  37: {12}
  38: {1,8}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A038348 (strict A096911).
For all even parts we have A066207, counted by A035363 (strict A000700).
For no even parts we have A066208, counted by A000009 (strict A035457).
Positions of 1 in A257992.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],EvenQ]]==1&]

A320630 Products of primes of nonprime squarefree index.

Original entry on oeis.org

2, 4, 8, 13, 16, 26, 29, 32, 43, 47, 52, 58, 64, 73, 79, 86, 94, 101, 104, 113, 116, 128, 137, 139, 146, 149, 158, 163, 167, 169, 172, 181, 188, 199, 202, 208, 226, 232, 233, 256, 257, 269, 271, 274, 278, 292, 293, 298, 313, 316, 317, 326, 334, 338, 344, 347
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The index of a prime number n is the number m such that n is the m-th prime.

Examples

			The sequence of terms begins:
    2 = prime(1)
    4 = prime(1)^2
    8 = prime(1)^3
   13 = prime(6)
   16 = prime(1)^4
   26 = prime(1)*prime(6)
   29 = prime(10)
   32 = prime(1)^5
   43 = prime(14)
   47 = prime(15)
   52 = prime(1)^2*prime(6)
   58 = prime(1)*prime(10)
   64 = prime(1)^6
   73 = prime(21)
   79 = prime(22)
   86 = prime(1)*prime(14)
   94 = prime(1)*prime(15)
  101 = prime(26)
  104 = prime(1)^3*prime(6)
  113 = prime(30)
  116 = prime(1)^2*prime(10)
  128 = prime(1)^7
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],With[{f=PrimePi/@First/@FactorInteger[#]},And[And@@SquareFreeQ/@f,And@@Not/@PrimeQ/@f]]&]

A330948 Nonprime numbers whose prime indices are not all prime numbers.

Original entry on oeis.org

4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 28, 30, 32, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 76, 77, 78, 80, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices of prime indices begins:
   4: {{},{}}
   6: {{},{1}}
   8: {{},{},{}}
  10: {{},{2}}
  12: {{},{},{1}}
  14: {{},{1,1}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  20: {{},{},{2}}
  21: {{1},{1,1}}
  22: {{},{3}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  28: {{},{},{1,1}}
  30: {{},{1},{2}}
  32: {{},{},{},{},{}}
  34: {{},{4}}
  35: {{2},{1,1}}
  36: {{},{},{1},{1}}
  38: {{},{1,1,1}}
		

Crossrefs

Complement in A330945 of A000040.
Complement in A018252 of A076610.
The restriction to odd terms is A330949.
Nonprime numbers n such that A330944(n) > 0.
Taking odds instead of nonprimes gives A330946.
The number of prime prime indices is given by A257994.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of nonprime index are A320628.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&&!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]

A351982 Number of integer partitions of n into prime parts with prime multiplicities.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 3, 0, 1, 1, 3, 3, 3, 0, 1, 4, 5, 5, 3, 3, 5, 8, 5, 5, 6, 8, 8, 11, 7, 8, 10, 17, 14, 14, 12, 17, 17, 21, 18, 23, 20, 28, 27, 31, 27, 36, 32, 35, 37, 46, 41, 52, 45, 60, 58, 63, 59, 78, 71, 76, 81, 87, 80, 103, 107, 113, 114, 127
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Examples

			The partitions for n = 4, 6, 10, 19, 20, 25:
  (22)  (33)   (55)     (55333)     (7733)       (55555)
        (222)  (3322)   (55522)     (77222)      (77722)
               (22222)  (3333322)   (553322)     (5533333)
                        (33322222)  (5522222)    (5553322)
                                    (332222222)  (55333222)
                                                 (55522222)
                                                 (333333322)
                                                 (3333322222)
		

Crossrefs

The version for just prime parts is A000607, ranked by A076610.
The version for just prime multiplicities is A055923, ranked by A056166.
For odd instead of prime we have A117958, ranked by A352142.
The constant case is A230595, ranked by A352519.
Allowing any multiplicity > 1 gives A339218, ranked by A352492.
These partitions are ranked by A346068.
The non-constant case is A352493, ranked by A352518.
A000040 lists the primes.
A001221 counts constant partitions of prime length, ranked by A053810.
A001694 lists powerful numbers, counted A007690, weak A052485.
A038499 counts partitions of prime length.
A101436 counts parts of prime signature that are themselves prime.
A112798 lists prime indices, reverse A296150, sum A056239.
A124010 gives prime signature, sorted A118914, sum A001222.
A257994 counts prime indices that are prime, nonprime A330944.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], And@@PrimeQ/@#&&And@@PrimeQ/@Length/@Split[#]&]],{n,0,30}]

A330946 Odd numbers whose prime indices are not all prime numbers.

Original entry on oeis.org

7, 13, 19, 21, 23, 29, 35, 37, 39, 43, 47, 49, 53, 57, 61, 63, 65, 69, 71, 73, 77, 79, 87, 89, 91, 95, 97, 101, 103, 105, 107, 111, 113, 115, 117, 119, 129, 131, 133, 137, 139, 141, 143, 145, 147, 149, 151, 159, 161, 163, 167, 169, 171, 173, 175, 181, 183, 185
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also MM-numbers of multiset partitions whose parts not all singletons (see example).

Examples

			The sequence of terms together with their prime indices of prime indices begins:
   7: {{1,1}}
  13: {{1,2}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  29: {{1,3}}
  35: {{2},{1,1}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  43: {{1,4}}
  47: {{2,3}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  57: {{1},{1,1,1}}
  61: {{1,2,2}}
  63: {{1},{1},{1,1}}
  65: {{2},{1,2}}
  69: {{1},{2,2}}
  71: {{1,1,3}}
  73: {{2,4}}
		

Crossrefs

Odd numbers n such that A330944(n) > 0.
Including even numbers gives A330945.
The restriction to nonprimes is A330949.
Taking nonprimes instead of odds gives A330947.
The number of prime prime indices is given by A257994.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are A320628.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    Select[Range[1,100,2],!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]

A330947 Nonprime numbers whose prime indices are all prime numbers.

Original entry on oeis.org

1, 9, 15, 25, 27, 33, 45, 51, 55, 75, 81, 85, 93, 99, 121, 123, 125, 135, 153, 155, 165, 177, 187, 201, 205, 225, 243, 249, 255, 275, 279, 289, 295, 297, 327, 335, 341, 363, 369, 375, 381, 405, 415, 425, 451, 459, 465, 471, 495, 527, 531, 537, 545, 561, 573
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices of prime indices begins:
    1: {}
    9: {{1},{1}}
   15: {{1},{2}}
   25: {{2},{2}}
   27: {{1},{1},{1}}
   33: {{1},{3}}
   45: {{1},{1},{2}}
   51: {{1},{4}}
   55: {{2},{3}}
   75: {{1},{2},{2}}
   81: {{1},{1},{1},{1}}
   85: {{2},{4}}
   93: {{1},{5}}
   99: {{1},{1},{3}}
  121: {{3},{3}}
  123: {{1},{6}}
  125: {{2},{2},{2}}
  135: {{1},{1},{1},{2}}
  153: {{1},{1},{4}}
  155: {{2},{5}}
		

Crossrefs

Complement in A076610 of A000040.
Complement in A018252 of A330948.
Nonprime numbers n such that A330944(n) = 0.
Taking odds instead of nonprimes gives A330946.
The number of prime prime indices is given by A257994.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are A320628.
Numbers whose prime indices are not all prime are A330945.

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&&And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]

A331914 Numbers with at most one prime prime index, counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

First differs from A324935 in having 39.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}           24: {1,1,1,2}      52: {1,1,6}
   2: {1}          26: {1,6}          53: {16}
   3: {2}          28: {1,1,4}        56: {1,1,1,4}
   4: {1,1}        29: {10}           57: {2,8}
   5: {3}          31: {11}           58: {1,10}
   6: {1,2}        32: {1,1,1,1,1}    59: {17}
   7: {4}          34: {1,7}          61: {18}
   8: {1,1,1}      35: {3,4}          62: {1,11}
  10: {1,3}        37: {12}           64: {1,1,1,1,1,1}
  11: {5}          38: {1,8}          65: {3,6}
  12: {1,1,2}      39: {2,6}          67: {19}
  13: {6}          40: {1,1,1,3}      68: {1,1,7}
  14: {1,4}        41: {13}           69: {2,9}
  16: {1,1,1,1}    42: {1,2,4}        70: {1,3,4}
  17: {7}          43: {14}           71: {20}
  19: {8}          44: {1,1,5}        73: {21}
  20: {1,1,3}      46: {1,9}          74: {1,12}
  21: {2,4}        47: {15}           76: {1,1,8}
  22: {1,5}        48: {1,1,1,1,2}    77: {4,5}
  23: {9}          49: {4,4}          78: {1,2,6}
		

Crossrefs

These are numbers n such that A257994(n) <= 1.
Prime-indexed primes are A006450, with products A076610.
The number of distinct prime prime indices is A279952.
Numbers with at least one prime prime index are A331386.
The set S of numbers with at most one prime index in S are A331784.
The set S of numbers with at most one distinct prime index in S are A331912.
Numbers with exactly one prime prime index are A331915.
Numbers with exactly one distinct prime prime index are A331916.
Numbers with at most one distinct prime prime index are A331995.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?PrimeQ]<=1&]
Previous Showing 21-30 of 57 results. Next