cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A368105 The number of bi-unitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Comments

First differs from A095691 and A365552 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2 || OddQ[e], e, e -1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2 || x == 2, x, x-1), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = e if e = 2 or e is odd, and e-1 otherwise.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n equals the square of a squarefree number (A062503).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4 + 1/p^5) = 1.87133814920590891161... .

A368978 The number of bi-unitary divisors of n that are squares (A000290).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Comments

First differs from A007424, A278908, A307848, A323308, A358260 and A365549 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e + 1)/2, 2*Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+1)/2, 2*((x+2)\4)), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = (e + 1)/2 if e is odd, and 2*floor((e+2)/4) if e is even.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n is in A062503.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4 + 1/p^5) = 1.58922450321701775833... .

A368251 The number of nonsquarefree divisors of n that are powers of squarefree numbers (A072777).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2023

Keywords

Comments

First differs from A046660 and A066301 at n = 36, and from A183094 at n = 72.
Let b(n, k) be the sequence that counts the divisors of n that are k-th powers of squarefree numbers. Then, b(n, 1) = A034444(n), b(n, 2) = A323308(n), b(n, 3) = A368248(n). b(n, k) is multiplicative with b(p^e, k) = 2 if e >= k, and 1 otherwise. The asymptotic mean of b(n, k) for k >= 2 is lim_{m->oo} (1/m) * Sum_{n=1..m} b(n, k) = zeta(k)/zeta(2*k). Since a(n) = Sum_{k>=2} (b(n, k) - 1), the formula for the asymptotic mean of this sequence follows (see the Formula section).

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, 1 + Total[2^Accumulate[Count[e, #] & /@ Range[Max[e], 1, -1]] - 1] - 2^Length[e]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), e, m, h, c); if(n == 1, 0, e = f[,2]; m = vecmax(e); h = vector(m); for(i = 1,m, c = 0; for(j = 1, #e, if(e[j] == (m+1-i), c++)); h[i] = c); for(i = 2, m, h[i] += h[i-1]); for(i = 1, m, h[i] = 2^h[i]-1); 1 + vecsum(h) - 1<<#e);}

Formula

a(n) = A327527(n) - A034444(n).
a(n) = 0 if and only if n is squarefree (A005117).
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} (zeta(k)/zeta(2*k) - 1) = 0.848633... (A368250).

A380398 The number of unitary divisors of n that are perfect powers (A001597).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 23 2025

Keywords

Comments

First differs from A368978 at n = 32, from A007424 and A369163 at n = 36, from A278908, A307848, A358260 and A365549 at n = 64, and from A323308 at n = 72.
a(n) depends only on the prime signature of n (A118914).
The record values are 2^k, for k = 0, 1, 2, ..., and they are attained at A061742(k).
The sum of unitary divisors of n that are perfect powers is A380400(n).

Examples

			a(4) = 2 since 4 have 2 unitary divisors that are perfect powers, 1 and 4 = 2^2.
a(72) = 3 since 72 have 3 unitary divisors that are perfect powers, 1, 8 = 2^3, and 9 = 3^2.
		

Crossrefs

Programs

  • Mathematica
    ppQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := DivisorSum[n, 1 &, CoprimeQ[#, n/#] && ppQ[#] &]; Array[a, 100]
  • PARI
    a(n) = sumdiv(n, d, gcd(d, n/d) == 1 && (d == 1 || ispower(d)));

Formula

a(n) = Sum_{d|n, gcd(d, n/d) == 1} [d in A001597], where [] is the Iverson bracket.
a(n) = A091050(n) - A380399(n).
a(n) = 1 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - Sum_{k>=2} mu(k)*(zeta(k)/zeta(k+1) - 1) = 1.49341326536904597349..., where mu is the Moebius function (A008683).

A385042 The number of unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A367515 at n = 128.
The sum of these divisors is A385043(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353898.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), this sequence (exponentially 2^n), A385044 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := Boole[e == 2^IntegerExponent[e, 2]] + 1; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x == 1<
    				

Formula

Multiplicative with a(p^e) = A209229(e) + 1.
a(n) <= A034444(n), with equality if and only if n is in A138302.
a(n) <= A353898(n), with equality if and only if n is squarefree (A005117).

A385044 The number of unitary divisors of n that are 5-rough numbers (A007310).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The sum of these divisors is A385045(n), and the largest of them is A065330(n).

Crossrefs

The unitary analog of A035218.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), A385042 (exponentially 2^n), this sequence (5-rough).

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x <= 3, 1, 2), factor(n)[, 1]));

Formula

Multiplicative with a(p^e) = 1 if p <= 3, and 2 if p >= 5.
a(n) = A034444(n)/A382488(n).
a(n) <= A034444(n), with equality if and only if n is 5-rough.
a(n) <= A035218(n).
Dirichlet g.f.: (zeta(s)^2/zeta(2*s)) * (1/((1+1/2^s)*(1+1/3^s))).
Sum_{k=1..n} a(k) ~ (n / (2 * zeta(2))) *(log(n) + 2*gamma - 1 + log(2)/3 + log(3)/4 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A365403 The sum of the unitary divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 5, 26, 1, 10, 5, 1, 1, 1, 17, 1, 1, 1, 50, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 26, 5, 1, 1, 1, 17, 82
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

The number of these divisors is A323308(n).
The sum of the unitary divisors of the square root of the largest square dividing n is A365404(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^(2*Floor[e/2]) + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^(2*(f[i,2]\2))));}

Formula

a(n) = A034448(A008833(n)).
a(n) <= A034448(n) with equality if and only if n is a square (A000290).
a(n) >= 1 with equality if and only if n is squarefree (A005117).
Multiplicative with a(p) = 1 and a(p^e) = p^(2*floor(e/2)) + 1 for e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) / zeta(4*s-2).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(4)) = 30*zeta(3/2)/Pi^4 = 0.804557969165... .

A365404 The sum of the unitary divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 5, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 5, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 9, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 5, 10, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

The number of these divisors is A323308(n).
The sum of the unitary divisors of the largest square dividing n is A365403(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^Floor[e/2] + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^(f[i,2]\2)));}

Formula

a(n) = A034448(A000188(n)).
a(n) >= 1 with equality if and only if n is squarefree (A005117).
Multiplicative with a(p) = 1 and a(p^e) = p^floor(e/2) + 1 for e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-1).
Sum_{k=1..n} a(k) ~ (n/(2*zeta(3))) * (log(n) + 3*gamma - 1 - 4*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).

A368104 The number of bi-unitary divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Crossrefs

Similar sequences: A323308, A357669, A368106.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1 || EvenQ[e], e, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1 || !(x%2), x, x+1), factor(n)[, 2]));

Formula

a(n) = A286324(A057521(n)).
Multiplicative with a(p^e) = e if e is even or e = 1, and e + 1 otherwise.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 2/p^3 - 1/p^4) = 2.12258268547914758409... .

A368106 The number of infinitary divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 4, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Crossrefs

Similar sequences: A323308, A357669, A368104.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, 2^DigitCount[e, 2, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 1, 2^hammingweight(x)), factor(n)[, 2]));

Formula

a(n) = A037445(A057521(n)).
Multiplicative with a(p) = 1 and a(p^e) = 2^A000120(e) for e >= 2.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A037445(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.89684906463124350536..., where f(x) = (1-x) * (Product_{k>=0} (1 + 2*x^(2^k)) - x).
Previous Showing 11-20 of 25 results. Next