cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A323872 Number of n X n aperiodic binary toroidal necklaces.

Original entry on oeis.org

1, 2, 2, 54, 4050, 1342170, 1908852102, 11488774559598, 288230375950387200, 29850020237398244599296, 12676506002282260237970435130, 21970710674130840874443091905460038, 154866286100907105149455216472736043777350, 4427744605404865645682169434028029029963535277450
Offset: 0

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Comments

The 1-dimensional (Lyndon word) case is A001037.
We define a toroidal necklace to be an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns. An n X k matrix is aperiodic if all n * k rotations of its sequence of rows and its sequence of columns are distinct.

Examples

			Inequivalent representatives of the a(2) = 2 aperiodic necklaces:
  [0 0] [0 1]
  [0 1] [1 1]
Inequivalent representatives of the a(3) = 54 aperiodic necklaces:
  000  000  000  000  000  000  000  000  000
  000  000  001  001  001  001  001  001  001
  001  011  001  010  011  100  101  110  111
.
  000  000  000  000  000  000  000  000  000
  011  011  011  011  011  011  011  111  111
  001  010  011  100  101  110  111  001  011
.
  001  001  001  001  001  001  001  001  001
  001  001  001  001  001  001  010  010  010
  010  011  100  101  110  111  011  101  110
.
  001  001  001  001  001  001  001  001  001
  010  011  011  011  011  011  100  100  100
  111  010  011  101  110  111  011  110  111
.
  001  001  001  001  001  001  001  001  001
  101  101  101  101  110  110  110  110  111
  011  101  110  111  011  101  110  111  011
.
  001  001  001  011  011  011  011  011  011
  111  111  111  011  011  011  101  110  111
  101  110  111  101  110  111  111  111  111
		

Crossrefs

Programs

  • Mathematica
    apermatQ[m_]:=UnsameQ@@Join@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}];
    neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]];
    Table[Length[Select[(Partition[#,n]&)/@Tuples[{0,1},n^2],And[apermatQ[#],neckmatQ[#]]&]],{n,4}]

Extensions

Terms a(5) and beyond from Andrew Howroyd, Aug 21 2019

A323868 Number of matrices of size n whose entries cover an initial interval of positive integers.

Original entry on oeis.org

1, 6, 26, 225, 1082, 18732, 94586, 2183340, 21261783, 408990252, 3245265146, 168549405570, 1053716696762, 42565371881772, 921132763911412, 26578273409906775, 260741534058271802, 20313207979541071938, 185603174638656822266, 16066126777466305218690
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2019

Keywords

Examples

			The 42 matrices of size 4 whose entries cover {1,2}:
  1222 2111 1122 2211 1212 2121 1221 2112 1112 2221 1121 2212 1211 2122
.
  12  21  11  22  12  21  12  21  11  22  11  22  12  21
  22  11  22  11  12  21  21  12  12  21  21  12  11  22
.
  1   2   1   2   1   2   1   2   1   2   1   2   1   2
  2   1   1   2   2   1   2   1   1   2   1   2   2   1
  2   1   2   1   1   2   2   1   1   2   2   1   1   2
  2   1   2   1   2   1   1   2   2   1   1   2   1   2
The 18 matrices of size 4 whose entries cover {1,2} with multiplicities {2,2}:
  [1 1 2 2] [2 2 1 1] [1 2 1 2] [2 1 2 1] [1 2 2 1] [2 1 1 2]
.
  [1 1] [2 2] [1 2] [2 1] [1 2] [2 1]
  [2 2] [1 1] [1 2] [2 1] [2 1] [1 2]
.
  [1] [2] [1] [2] [1] [2]
  [1] [2] [2] [1] [2] [1]
  [2] [1] [1] [2] [2] [1]
  [2] [1] [2] [1] [1] [2]
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> b(n)*numtheory[tau](n):
    seq(a(n), n=1..20);  # Alois P. Heinz, Feb 04 2019
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    nrmmats[n_]:=Join@@Table[Table[Table[Position[stn,{i,j}][[1,1]],{i,d},{j,n/d}],{stn,Join@@Permutations/@sps[Tuples[{Range[d],Range[n/d]}]]}],{d,Divisors[n]}];
    Table[Length[nrmmats[n]],{n,6}]
    Table[DivisorSigma[0, n]*Sum[k! StirlingS2[n, k], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Feb 05 2019 *)
  • PARI
    a(n) = numdiv(n)*sum(k=0, n, stirling(n, k, 2)*k!); \\ Michel Marcus, Feb 05 2019

Formula

a(n) = A000005(n) * A000670(n).

A324914 a(n) = Sum_{k=1..n} 2^k * tau(k), where tau(k) = A000005(k).

Original entry on oeis.org

2, 10, 26, 74, 138, 394, 650, 1674, 3210, 7306, 11402, 35978, 52362, 117898, 248970, 576650, 838794, 2411658, 3460234, 9751690, 18140298, 34917514, 51694730, 185912458, 286575754, 555011210, 1091882122, 2702494858, 3776236682, 12366171274
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 18 2019

Keywords

Comments

Partial sums of A323351 with n=0 term of A323351 omitted. - Robert Israel, Jun 27 2019

Crossrefs

Programs

  • Maple
    ListTools:-PartialSums([seq(2^k*numtheory:-tau(k),k=1..100)]); # Robert Israel, Jun 27 2019
  • Mathematica
    Accumulate[Table[2^k*DivisorSigma[0, k], {k, 1, 30}]]
Previous Showing 11-13 of 13 results.