A323661
a(n) = Product_{k=0..n} (k^12 + (n-k)^12).
Original entry on oeis.org
0, 1, 33554432, 4740695283514005729, 651240623131512957219821846528, 4811704081770214536604871809482574462890625, 84537031377296019762303015000377965680906643309559021568, 16210797840416801857079558076889164370156937375891800497483902744790721
Offset: 0
Cf.
A323540,
A323541,
A323542,
A323543,
A323544,
A323545,
A323546,
A320345,
A323659,
A323660,
A323662.
-
Table[Product[k^12+(n-k)^12, {k, 0, n}], {n, 0, 10}]
A323662
a(n) = Product_{k=0..n} (k^13 + (n-k)^13).
Original entry on oeis.org
0, 1, 134217728, 170623376651175378921, 187556828900191806607614608932864, 17233921359224498311699145473539829254150390625, 3651108402083969086976039852657366429953837378356052425179136
Offset: 0
Cf.
A323540,
A323541,
A323542,
A323543,
A323544,
A323545,
A323546,
A320345,
A323659,
A323660,
A323661.
-
Table[Product[k^13+(n-k)^13, {k, 0, n}], {n, 0, 10}]
A376523
a(n) = Product_{k=0..n} (k^3 + n - k).
Original entry on oeis.org
0, 1, 32, 2187, 286720, 64796875, 23279477760, 12506434235113, 9582123576983552, 10084099499408154825, 14139206937856000000000, 25756714724499975610869475, 59683270195198565091221962752, 172781591936242461223503558613507, 615312169743368293769528795463680000
Offset: 0
-
A376523 := proc(n)
mul(k^3+n-k,k=0..n) ;
end proc:
seq(A376523(n),n=0..20) ; # R. J. Mathar, Sep 27 2024
-
Table[Product[k^3+n-k, {k, 0, n}], {n, 0, 16}]
A323751
a(n) = Product_{k=0..n} (k^n + (n-k)^n).
Original entry on oeis.org
2, 1, 32, 59049, 14101250048, 775913238525390625, 13410804447068120796679372800, 112244673425189306235795780017831813874289, 545831702006800417886454373052629612732034857946832699392
Offset: 0
-
[(&*[k^n +(n-k)^n: k in [0..n]]): n in [0..10]]; // G. C. Greubel, Feb 08 2019
-
Table[Product[k^n+(n-k)^n, {k,0,n}], {n,0,10}] (* G. C. Greubel, Feb 08 2019 *)
-
{a(n) = prod(k=0, n, k^n+(n-k)^n)}
-
[product(k^n +(n-k)^n for k in (0..n)) for n in (0..10)] # G. C. Greubel, Feb 08 2019