cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A290077 a(n) = A000010(A005940(1+n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 8, 4, 20, 6, 18, 8, 10, 6, 12, 8, 24, 8, 24, 8, 42, 20, 40, 12, 100, 18, 54, 16, 12, 10, 20, 12, 40, 12, 36, 16, 60, 24, 48, 16, 120, 24, 72, 16, 110, 42, 84, 40, 168, 40, 120, 24, 294, 100, 200, 36, 500, 54, 162, 32, 16, 12, 24, 20, 48, 20, 60, 24, 72, 40, 80, 24, 200, 36, 108, 32, 120, 60, 120
Offset: 0

Views

Author

Antti Karttunen, Jul 19 2017

Keywords

Comments

Each n occurs A014197(n) times in total in this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_, i_, x_]:=f[n, i, x]=Which[n==0, x, EvenQ[n], f[n/2, i + 1, x], f[(n - 1)/2, i, x Prime[i]]]; a005940[n_]:=f[n - 1, 1, 1]; Table[EulerPhi[a005940[n + 1]], {n, 0, 100}] (* Indranil Ghosh, Jul 20 2017 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A290077(n) = eulerphi(A005940(1+n));
    
  • PARI
    A290077(n) = { my(p=2,z=1); while(n, if(!(n%2), p=nextprime(1+p), z *= (p-(1==(n%4)))); n>>=1); (z); }; \\ Antti Karttunen, Aug 05 2023
    
  • Sage
    def A290077(n):
        i = 1
        m = 1
        while n > 0:
          if 0==(n%2):
            n = n//2
            i += 1
          else:
            if(1==(n%4)):
              n = (n-1)//4
              m *= sloane.A000040(i)-1
              i += 1
            else:
              n = (n-1)//2
              m *= sloane.A000040(i)
        return m
    
  • Scheme
    (define (A290077 n) (A000010 (A005940 (+ 1 n))))
    
  • Scheme
    (define (A290077 n) (let loop ((n n) (m 1) (i 1)) (cond ((zero? n) m) ((even? n) (loop (/ n 2) m (+ 1 i))) ((= 1 (modulo n 4)) (loop (/ (- n 1) 4) (* m (- (A000040 i) 1)) (+ 1 i))) (else (loop (/ (- n 1) 2) (* m (A000040 i)) i))))) ;; Requires only an implementation of A000040, see for example under A083221.

Formula

a(n) = A000010(A005940(1+n)).

A324184 a(n) = sigma(A163511(n)).

Original entry on oeis.org

1, 3, 7, 4, 15, 13, 12, 6, 31, 40, 39, 31, 28, 24, 18, 8, 63, 121, 120, 156, 91, 124, 93, 57, 60, 78, 72, 48, 42, 32, 24, 12, 127, 364, 363, 781, 280, 624, 468, 400, 195, 403, 372, 342, 217, 228, 171, 133, 124, 240, 234, 248, 168, 192, 144, 96, 90, 104, 96, 72, 56, 48, 36, 14, 255, 1093, 1092, 3906, 847, 3124, 2343, 2801, 600
Offset: 0

Views

Author

Antti Karttunen, Feb 17 2019

Keywords

Crossrefs

Programs

  • PARI
    A324184(n) = if(!n,1,my(p=2,mp=p*p,m=1); while(n>1, if(n%2, p=nextprime(1+p); mp = p*p, if((2==n)||!(n%4),mp *= p,m *= (mp-1)/(p-1))); n >>= 1); (m*(mp-1)/(p-1)));
    
  • PARI
    A163511(n) = if(!n,1,my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(p+1)); n >>= 1); (t*p));
    A324184(n) = sigma(A163511(n));
    
  • Python
    from sympy import nextprime
    def A324184(n):
        if n:
            c, p = 1, 1
            while n:
                c *= ((p:=nextprime(p))**(s:=(~n&n-1).bit_length()+1)-1)//(p-1)
                n >>= s
            return c*(p**(s+1)-1)//(p**s-1)
        return 1 # Chai Wah Wu, Jul 25 2023

Formula

a(n) = A000203(A163511(n)).
For n >= 1, a(n) = A324054(A054429(n)).

A324057 a(n) = A106315(A005940(1+n)).

Original entry on oeis.org

0, 1, 2, 5, 4, 0, 1, 2, 6, 4, 12, 16, 13, 30, 28, 18, 10, 8, 20, 36, 44, 24, 36, 12, 33, 21, 78, 51, 32, 72, 42, 3, 12, 16, 36, 0, 4, 48, 66, 50, 20, 128, 72, 48, 58, 144, 120, 108, 97, 75, 198, 32, 102, 312, 10, 84, 172, 128, 504, 176, 1, 168, 2, 67, 16, 20, 44, 12, 8, 96, 126, 88, 28, 16, 168, 112, 162, 264, 232, 56, 68, 80, 312, 0, 200, 480, 36, 120
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A106315(A005940(1+n)).
a(n) = A005940(1+n)*A106737(n) mod A324054(n).

A323915 a(n) = A023900(A005940(1+n)).

Original entry on oeis.org

1, -1, -2, -1, -4, 2, -2, -1, -6, 4, 8, 2, -4, 2, -2, -1, -10, 6, 12, 4, 24, -8, 8, 2, -6, 4, 8, 2, -4, 2, -2, -1, -12, 10, 20, 6, 40, -12, 12, 4, 60, -24, -48, -8, 24, -8, 8, 2, -10, 6, 12, 4, 24, -8, 8, 2, -6, 4, 8, 2, -4, 2, -2, -1, -16, 12, 24, 10, 48, -20, 20, 6, 72, -40, -80, -12, 40, -12, 12, 4, 120, -60, -120, -24, -240, 48, -48
Offset: 0

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A323915(n) = { my(m1=1, p=2); while(n, if(!(n%2), p=nextprime(1+p), if(1==(n%4), m1 *= (1-p))); n>>=1); (m1); };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    A323915(n) = A023900(A005940(1+n));

Formula

a(n) = A023900(A005940(1+n)).

A331733 a(n) = sigma(A225546(n)), where sigma is the sum of divisors.

Original entry on oeis.org

1, 3, 7, 4, 31, 15, 511, 12, 13, 63, 131071, 28, 8589934591, 1023, 127, 6, 36893488147419103231, 39, 680564733841876926926749214863536422911, 124, 2047, 262143, 231584178474632390847141970017375815706539969331281128078915168015826259279871, 60, 121, 17179869183, 91, 2044
Offset: 1

Views

Author

Antti Karttunen, Feb 02 2020

Keywords

Crossrefs

Cf. A323243, A323173, A324054, A324184, A324545 for other permutations of sigma, and also A324573, A324653.

Programs

  • Mathematica
    Array[If[# == 1, 1, DivisorSigma[1, #] &@ Apply[Times, Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]]] &, 28] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A331733(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,(prime(i)^(1+A048675(prods[i]))-1)/(prime(i)-1)));

Formula

a(n) = A000203(A225546(n)).
For all n >= 1, A000035(a(A016754(n))) = 1. [Result is odd for all odd squares]

A324545 An analog of sigma (A000203) for nonstandard factorization based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 40, 36, 24, 60, 31, 42, 32, 56, 30, 72, 32, 63, 78, 54, 48, 91, 38, 60, 48, 90, 42, 120, 44, 84, 121, 72, 48, 124, 57, 93, 124, 98, 54, 96, 156, 120, 104, 90, 60, 168, 62, 96, 56, 127, 72, 234, 68, 126, 240, 144, 72, 195, 74, 114, 72, 140, 96, 144, 80
Offset: 1

Views

Author

Antti Karttunen, Mar 06 2019

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
    A324545(n) = sigma(A250246(n));
    
  • PARI
    \\ Or alternatively, using also A078898 defined above:
    A000265(n) = (n/2^valuation(n, 2));
    A001511(n) = 1+valuation(n,2);
    A302045(n) = A001511(A078898(n));
    A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };
    A324545(n) = if(1==n,n,my(p=A020639(n)); (((p^(A302045(n)+1))-1)/(p-1))*A324545(A302044(n)));

Formula

a(n) = A000203(A250246(n)) = A324535(n) + A250246(n).
a(1) = 1; for n > 1, let p = A020639(n) [the smallest prime factor of n], then a(n) = (((p^(1+A302045(n)))-1) / (p-1)) * a(A302044(n)).
a(n) = A324054(A252754(n)).

A324056 a(n) = A000593(A005940(1+n)).

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 13, 1, 8, 6, 24, 4, 31, 13, 40, 1, 12, 8, 32, 6, 48, 24, 78, 4, 57, 31, 124, 13, 156, 40, 121, 1, 14, 12, 48, 8, 72, 32, 104, 6, 96, 48, 192, 24, 248, 78, 240, 4, 133, 57, 228, 31, 342, 124, 403, 13, 400, 156, 624, 40, 781, 121, 364, 1, 18, 14, 56, 12, 84, 48, 156, 8, 112, 72, 288, 32, 372, 104, 320, 6, 168, 96, 384, 48
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A000593(A005940(1+n)).
a(n) = A324054(n) / A038712(1+n).

A324349 a(n) = A324122(A005940(1+n)), where A005940 is the Doudna sequence and A324122(n) = sigma(n) - gcd(n*d(n), sigma(n)).

Original entry on oeis.org

0, 2, 2, 6, 4, 0, 12, 14, 6, 16, 12, 24, 30, 36, 36, 30, 10, 16, 28, 36, 44, 48, 72, 48, 54, 90, 122, 90, 152, 96, 120, 60, 12, 32, 36, 0, 68, 48, 102, 80, 92, 128, 168, 144, 246, 216, 120, 120, 132, 168, 222, 216, 336, 360, 402, 192, 396, 464, 600, 272, 780, 360, 362, 126, 16, 40, 52, 72, 80, 96, 150, 112, 84, 208, 264, 112, 366, 288, 312, 184, 164, 272, 360, 0, 568
Offset: 0

Views

Author

Antti Karttunen, Feb 24 2019

Keywords

Comments

Zeros occur in the same positions as in A324057, and can be obtained by sorting into ascending order the terms obtained with A156552(A001599(n)), n >= 1.

Crossrefs

Programs

Formula

a(n) = A324122(A005940(1+n)).
a(n) = A324054(n) - A324058(n).
For n > 0, a(n) = A324189(A054429(n)).

A324394 a(n) = A009194(A005940(1+n)), where A005940 is the Doudna sequence and A009194(n) = gcd(n,sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 3, 4, 1, 3, 1, 1, 1, 2, 1, 2, 1, 6, 3, 12, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 3, 28, 1, 6, 1, 10, 1, 2, 3, 12, 1, 18, 15, 4, 1, 1, 3, 1, 1, 6, 1, 3, 1, 2, 3, 4, 1, 3, 1, 1, 1, 2, 1, 4, 1, 6, 3, 8, 7, 2, 3, 28, 1, 6, 1, 2, 1, 2, 3, 28, 1, 6, 3, 120, 1, 2, 1, 6, 1, 90, 3, 12, 1, 1, 1, 7, 1, 6, 3, 5, 7, 2
Offset: 0

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Crossrefs

Programs

  • PARI
    A324394(n) = { my(m1=1,m2=1,p=2,mp=p*p); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, m1 *= p; if(3==(n%4),mp *= p,m2 *= (mp-1)/(p-1))); n>>=1); gcd(m1,m2); };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A009194(n) = gcd(n, sigma(n));
    A324394(n) = A009194(A005940(1+n));

Formula

a(n) = A009194(A005940(1+n)) = gcd(A005940(1+n), A324054(n)).

A332222 a(n) = A156552(sigma(A005940(1+n))).

Original entry on oeis.org

0, 2, 3, 8, 5, 11, 32, 10, 7, 13, 23, 35, 1024, 66, 39, 1024, 11, 23, 31, 37, 47, 55, 133, 43, 258, 2050, 4099, 72, 267, 87, 48, 38, 17, 27, 47, 71, 55, 95, 263, 45, 95, 111, 191, 151, 8199, 269, 175, 4099, 264, 518, 1035, 2056, 1037, 8203, 2080, 138, 207, 539, 1071, 167, 1048592, 98, 291, 1073741824, 13, 37, 71, 75, 75, 111
Offset: 0

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ DivisorSigma[1, #]]] &@ Block[{p = Partition[Split[Join[IntegerDigits[#, 2], {2}]], 2], q}, Times @@ Flatten[Table[q = Take[p, -i]; Prime[Count[Flatten[q], 0] + 1]^q[[1, 1]], {i, Length[p]}]]] &, 70, 0] (* Michael De Vlieger, Feb 12 2020, after Robert G. Wilson v at A005940 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332222(n) = A156552(sigma(A005940(1+n)));

Formula

a(n) = A156552(A000203(A005940(1+n))).
a(n) = A332221(A005940(1+n)) = A156552(A324054(n)).
Previous Showing 11-20 of 28 results. Next