cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A326251 Number of digraphs with vertices {1..n} whose increasing edges are not crossing.

Original entry on oeis.org

1, 2, 16, 512, 49152, 11534336, 6039797760, 6768868458496, 15885743998107648, 77083611222073409536, 767126299049285413502976, 15572324598183490228037091328, 642316330843573124053884695740416, 53681919993405760099480940765478125568
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

A directed edge (a,b) is increasing if a < b. Two edges (a,b), (c,d) are crossing if a < c < b < d or c < a < d < b.
Conjecture: Also the number of non-nesting digraphs with vertices {1..n} whose increasing edges are not crossing, where two edges (a,b), (c,d) are nesting if a < c < d < b or c < a < b < d.

Crossrefs

Simple graphs whose edges are non-crossing are A054726.
Digraphs whose edges are not crossing are A326237.
Digraphs whose increasing edges are crossing are A326252.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

a(n) = 2^(n * (n + 1)/2) * A054726(n).

A324326 Number of crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 10, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 36, 0, 14, 0, 0, 0, 25, 0, 0, 0, 71, 0, 0, 0, 0, 0, 0, 0, 103, 0, 0, 0, 0, 0, 0, 0, 75
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} with x < z < y < t or z < x < t < y.

Examples

			The a(36) = 10 crossing multiset partitions of {1,1,2,2,3,4}:
  {{1,3},{1,2,2,4}}
  {{2,4},{1,1,2,3}}
  {{1,1,3},{2,2,4}}
  {{1,2,3},{1,2,4}}
  {{1},{1,3},{2,2,4}}
  {{1},{2,4},{1,2,3}}
  {{2},{1,3},{1,2,4}}
  {{2},{1,1,3},{2,4}}
  {{1,2},{1,3},{2,4}}
  {{1},{2},{1,3},{2,4}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324325(n) = A318284(n).

A326260 MM-numbers of capturing, non-nesting multiset partitions (with empty parts allowed).

Original entry on oeis.org

2599, 4163, 5198, 6463, 6893, 7291, 7797, 8326, 8507, 9131, 9959, 10396, 10649, 11041, 11639, 12489, 12811, 12926, 12995, 13786, 14237, 14582, 14899, 15157, 15594, 16123, 16403, 16652, 17014, 17063, 17089, 17141, 18101, 18193, 18262, 18643, 18659, 19337, 19389
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A set partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. It is nesting if it has two blocks of the form {...x,y...} and {...z,t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   2599: {{2,2},{1,2,3}}
   4163: {{2,2},{1,2,4}}
   5198: {{},{2,2},{1,2,3}}
   6463: {{2,2},{1,1,2,3}}
   6893: {{1,2,2},{1,2,3}}
   7291: {{2,2},{1,2,5}}
   7797: {{1},{2,2},{1,2,3}}
   8326: {{},{2,2},{1,2,4}}
   8507: {{2,3},{1,2,4}}
   9131: {{2,2},{1,2,6}}
   9959: {{2,2},{1,1,2,4}}
  10396: {{},{},{2,2},{1,2,3}}
  10649: {{2,2},{1,2,2,3}}
  11041: {{1,2,2},{1,2,4}}
  11639: {{2,2,2},{1,2,3}}
  12489: {{1},{2,2},{1,2,4}}
  12811: {{2,2},{1,2,7}}
  12926: {{},{2,2},{1,1,2,3}}
  12995: {{2},{2,2},{1,2,3}}
  13786: {{},{1,2,2},{1,2,3}}
		

Crossrefs

Non-nesting set partitions are A000108.
Capturing set partitions are A326243.
Capturing, non-nesting set partitions are A326249.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.

Programs

  • Mathematica
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    Select[Range[10000],!nesXQ[primeMS/@primeMS[#]]&&capXQ[primeMS/@primeMS[#]]&]

A326247 Number of labeled n-vertex 2-edge multigraphs that are neither crossing nor nesting.

Original entry on oeis.org

0, 0, 1, 9, 32, 80, 165, 301, 504, 792, 1185, 1705, 2376, 3224, 4277, 5565, 7120, 8976, 11169, 13737, 16720, 20160, 24101, 28589, 33672, 39400, 45825, 53001, 60984, 69832, 79605, 90365, 102176, 115104, 129217, 144585, 161280, 179376, 198949, 220077, 242840
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(3) = 9 pairs of edges:
  {12,12}
  {12,13}
  {12,23}
  {13,12}
  {13,13}
  {13,23}
  {23,12}
  {23,13}
  {23,23}
		

Crossrefs

The case for simple graphs (rather than multigraphs) is A095661.
Simple graphs that are neither crossing nor nesting are A326244.
The case for set partitions is A001519.
Non-crossing and non-nesting simple graphs are (both) A054726.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjectures from Colin Barker, Jun 21 2019: (Start)
G.f.: x^2*(1 + 4*x - 3*x^2) / (1 - x)^5.
a(n) = (n*(12 - 19*n + 6*n^2 + n^3)) / 12.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
(End)

A326289 a(0) = 0, a(n) = 2^binomial(n,2) - 2^(n - 1).

Original entry on oeis.org

0, 0, 0, 4, 56, 1008, 32736, 2097088, 268435328, 68719476480, 35184372088320, 36028797018962944, 73786976294838204416, 302231454903657293672448, 2475880078570760549798240256, 40564819207303340847894502555648, 1329227995784915872903807060280311808
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Number of simple graphs with vertices {1..n} containing two edges {a,b}, {c,d} that are weakly crossing, meaning a <= c < b <= d or c <= a < d <= b.

Examples

			The a(4) = 56 weakly crossing edge-sets:
  {12,13}  {12,13,14}  {12,13,14,23}  {12,13,14,23,24}  {12,13,14,23,24,34}
  {12,14}  {12,13,23}  {12,13,14,24}  {12,13,14,23,34}
  {12,23}  {12,13,24}  {12,13,14,34}  {12,13,14,24,34}
  {12,24}  {12,13,34}  {12,13,23,24}  {12,13,23,24,34}
  {12,34}  {12,14,23}  {12,13,23,34}  {12,14,23,24,34}
  {13,14}  {12,14,24}  {12,13,24,34}  {13,14,23,24,34}
  {13,23}  {12,14,34}  {12,14,23,24}
  {13,24}  {12,23,24}  {12,14,23,34}
  {13,34}  {12,23,34}  {12,14,24,34}
  {14,24}  {12,24,34}  {12,23,24,34}
  {14,34}  {13,14,23}  {13,14,23,24}
  {23,24}  {13,14,24}  {13,14,23,34}
  {23,34}  {13,14,34}  {13,14,24,34}
  {24,34}  {13,23,24}  {13,23,24,34}
           {13,23,34}  {14,23,24,34}
           {13,24,34}
           {14,23,24}
           {14,23,34}
           {14,24,34}
           {23,24,34}
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==0,0,2^Binomial[n,2]-2^(n-1)],{n,0,5}]

A326291 Number of unsortable factorizations of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2019

Keywords

Comments

A factorization into factors > 1 is unsortable if there is no permutation (c_1,...,c_k) of the factors such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the factorization (6*8*27) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(180) = 10 unsortable factorizations:
  (2*3*3*10)  (5*6*6)   (3*60)
              (2*3*30)  (6*30)
              (2*9*10)  (9*20)
              (3*3*20)  (10*18)
              (3*6*10)
Missing from this list are:
  (2*2*3*3*5)  (2*2*5*9)   (4*5*9)   (2*90)   (180)
               (2*3*5*6)   (2*2*45)  (4*45)
               (3*3*4*5)   (2*5*18)  (5*36)
               (2*2*3*15)  (2*6*15)  (12*15)
                           (3*4*15)
                           (3*5*12)
		

Crossrefs

Unsortable set partitions are A058681.
Unsortable normal multiset partitions are A326211.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[facs[n],!OrderedQ[Join@@Sort[primeMS/@#,lexsort]]&]],{n,100}]

A324325 Number of non-crossing multiset partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 5, 9, 7, 7, 11, 11, 12, 16, 14, 15, 26, 22, 21, 29, 19, 30, 33, 31, 30, 66, 38, 42, 52, 56, 42, 47, 45, 57, 82, 77, 67, 77, 67, 101, 98, 135, 64, 137, 97, 176, 104, 109, 109, 118, 105, 231, 213, 97, 127, 181, 139, 297, 173, 385, 195, 269
Offset: 1

Views

Author

Gus Wiseman, Feb 22 2019

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A multiset partition is crossing if it contains two blocks of the form {{...x...y...},{...z...t...}} where x < z < y < t or z < x < t < y.

Examples

			The a(16) = 14 non-crossing multiset partitions of the multiset {1,2,3,4}:
  {{1,2,3,4}}
  {{1},{2,3,4}}
  {{2},{1,3,4}}
  {{3},{1,2,4}}
  {{4},{1,2,3}}
  {{1,2},{3,4}}
  {{1,4},{2,3}}
  {{1},{2},{3,4}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{1,2},{4}}
  {{1},{2},{3},{4}}
Missing from this list is {{1,3},{2,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Formula

a(n) + A324326(n) = A318284(n).

A326277 Number of crossing normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 0, 1, 22, 314, 3711, 39947
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y.

Examples

			The a(5) = 22 crossing normal multiset partitions:
  {{1,3},{1,2,4}}  {{1},{1,3},{2,4}}
  {{1,3},{2,2,4}}  {{1},{2,4},{3,5}}
  {{1,3},{2,3,4}}  {{2},{1,3},{2,4}}
  {{1,3},{2,4,4}}  {{2},{1,4},{3,5}}
  {{1,3},{2,4,5}}  {{3},{1,3},{2,4}}
  {{1,4},{2,3,5}}  {{3},{1,4},{2,5}}
  {{2,4},{1,1,3}}  {{4},{1,3},{2,4}}
  {{2,4},{1,2,3}}  {{4},{1,3},{2,5}}
  {{2,4},{1,3,3}}  {{5},{1,3},{2,4}}
  {{2,4},{1,3,4}}
  {{2,4},{1,3,5}}
  {{2,5},{1,3,4}}
  {{3,5},{1,2,4}}
		

Crossrefs

Crossing simple graphs are A326210.
Normal multiset partitions are A255906.
Non-crossing normal multiset partitions are A324171.
MM-numbers of crossing multiset partitions are A324170.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A326292 Number of crossing integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 43, 57, 80, 105, 142, 186, 248, 320, 421, 539, 698, 889, 1140, 1438, 1827, 2291, 2882, 3593, 4489, 5559, 6902, 8503, 10484, 12853, 15763
Offset: 0

Views

Author

Gus Wiseman, Oct 03 2019

Keywords

Comments

A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. An integer partition is crossing if, by replacing each part with its multiset of prime indices, we obtain a crossing multiset partition.

Examples

			The a(31) = 1 through a(36) = 7 partitions:
  21,10  21,10,1  21,10,2    21,10,3      21,10,4        21,10,5
                  21,10,1,1  21,10,2,1    21,10,2,2      21,10,3,2
                             21,10,1,1,1  21,10,3,1      21,10,4,1
                                          21,10,2,1,1    21,10,2,2,1
                                          21,10,1,1,1,1  21,10,3,1,1
                                                         21,10,2,1,1,1
                                                         21,10,1,1,1,1,1
		

Crossrefs

The Heinz numbers of these partitions are given by A324170.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

Extensions

More terms from Jinyuan Wang, Jun 28 2020
Previous Showing 21-29 of 29 results.