A326336
Number of set partitions of {1..n} whose capturing blocks are connected.
Original entry on oeis.org
1, 1, 1, 1, 2, 7, 24, 100, 458, 2279, 12270
Offset: 0
The a(0) = 1 through a(6) = 24 set partitions:
{} {1} {12} {123} {1234} {12345} {123456}
{14}{23} {125}{34} {1236}{45}
{134}{25} {1245}{36}
{135}{24} {1246}{35}
{14}{235} {125}{346}
{145}{23} {1256}{34}
{15}{234} {126}{345}
{134}{256}
{1345}{26}
{1346}{25}
{135}{246}
{1356}{24}
{136}{245}
{14}{2356}
{145}{236}
{1456}{23}
{146}{235}
{15}{2346}
{156}{234}
{16}{2345}
{15}{26}{34}
{16}{23}{45}
{16}{24}{35}
{16}{25}{34}
Simple graphs whose capturing blocks are connected are
A326330.
Set partitions whose crossing blocks are connected are
A099947.
Set partitions whose nesting blocks are connected are
A326335.
-
capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
captcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],capXQ]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],Length[captcmpts[#]]<=1&]],{n,0,6}]
A268815
Number of purely crossing + partitions of [n].
Original entry on oeis.org
1, 1, 0, 0, 1, 1, 5, 19, 76, 360, 1792, 9634, 55286, 336396, 2162554, 14629720, 103818489, 770678553, 5969822993, 48148947503, 403545713463, 3508356996105, 31587389832791, 294087418038113, 2827471212909189, 28037001032306431, 286398141349873925, 3010540174760962975
Offset: 0
G.f.: A(x) = 1 + x + x^4 + x^5 + 5*x^6 + 19*x^7 + 76*x^8 + 360*x^9 + 1792*x^10 +...
Cf.
A000108,
A000110,
A005493,
A016098,
A099947,
A268814,
A306417,
A324011,
A324166,
A324173,
A324324,
A324327.
-
n = 30; F = x*Sum[BellB[k] x^k, {k, 0, n}] + O[x]^n; B = ComposeSeries[1/( InverseSeries[F, w] /w)-1, x/(1+x) + O[x]^n]; CoefficientList[B, x] // Rest (* Jean-François Alcover, Feb 16 2016, adapted from K. J. Dykema's code *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
intvQ[set_]:=Or[set=={},Sort[set]==Range[Min@@set,Max@@set]];
Table[Length[Select[sps[Range[n]],And[!MatchQ[#,{_,{_,x_,y_,_},_}/;x+1==y],#=={}||And@@Not/@intvQ/@Union@@@Subsets[#,{1,Length[#]-1}]]&]],{n,0,10}] (* Gus Wiseman, Feb 23 2019 *)
-
lista(nn) = {c = x/serreverse(x*serlaplace(exp(exp(x+x*O(x^nn)) -1))); b = subst(c, x, x/(1+x) + O(x^nn)); Vec(b);}
-
{a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/prod(k=1, m, (1+x)*A - k*x +x*O(x^n)) )); polcoeff(A, n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
-
{Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n)) - 1)^k)/k!, n)}
{Bell(n) = sum(k=0,n, Stirling2(n, k) )}
{a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, Bell(m)*x^m/((1+x)*A +x*O(x^n))^m) ); polcoeff(A, n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Mar 07 2016
Comments