cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A336394 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A331410(i) = A331410(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 3, 3, 5, 2, 5, 4, 6, 1, 7, 3, 8, 3, 9, 5, 10, 2, 11, 5, 12, 4, 13, 6, 14, 1, 7, 7, 8, 3, 15, 8, 16, 3, 17, 9, 18, 5, 19, 10, 20, 2, 5, 11, 21, 5, 19, 12, 22, 4, 13, 13, 22, 6, 20, 14, 23, 1, 24, 7, 11, 7, 17, 8, 16, 3, 25, 15, 26, 8, 18, 16, 27, 3, 15, 17, 18, 9, 28, 18, 29, 5, 26, 19, 30, 10, 31, 20, 32, 2, 8, 5, 21, 11
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A331410(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1]))));
    Aux336394(n) = [A278222(n), A331410(n)];
    v336394 = rgs_transform(vector(up_to, n, Aux336394(n)));
    A336394(n) = v336394[n];

A336934 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007733(i) = A007733(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 18, 3, 20, 11, 21, 6, 22, 12, 23, 2, 24, 13, 25, 7, 26, 14, 27, 4, 28, 15, 29, 8, 30, 16, 31, 1, 18, 17, 32, 9, 33, 18, 34, 5, 35, 19, 36, 10, 37, 18, 38, 3, 39, 20, 40, 11, 25, 21, 41, 6, 12, 22, 18, 12, 17, 23, 42, 2, 43, 24, 44, 13, 45, 25, 46, 7, 47
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007733(n), A336158(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007733(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ From A007733
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    Aux336934(n) = [A007733(n), A336158(n)];
    v336934 = rgs_transform(vector(up_to, n, Aux336934(n)));
    A336934(n) = v336934[n];

A336936 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A007733(n), A329697(n), A331410(n)], for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 10, 4, 14, 8, 15, 1, 16, 9, 17, 5, 18, 10, 17, 3, 19, 11, 20, 6, 21, 12, 22, 2, 23, 13, 24, 7, 25, 10, 26, 4, 27, 14, 28, 8, 29, 15, 30, 1, 21, 16, 31, 9, 32, 17, 33, 5, 34, 18, 35, 10, 36, 17, 37, 3, 38, 19, 39, 11, 40, 20, 41, 6, 42, 21, 43, 12, 44, 22, 45, 2, 46, 23, 47, 13
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2020

Keywords

Comments

Restricted growth sequence transform of the triplet [A007733(n), A329697(n), A331410(n)], or equally, of the ordered pair [A007733(n), A335880(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007733(n) = znorder(Mod(2, n/2^valuation(n, 2))); \\ From A007733
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1]))));
    Aux336936(n) = [A007733(n), A329697(n), A331410(n)];
    v336936 = rgs_transform(vector(up_to, n, Aux336936(n)));
    A336936(n) = v336936[n];

A351452 Lexicographically earliest infinite sequence such that a(i) = a(j) => A006530(i) = A006530(j) and A278222(i) = A278222(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 14, 8, 15, 5, 16, 9, 17, 2, 18, 10, 19, 6, 20, 11, 21, 4, 22, 12, 23, 7, 24, 13, 25, 3, 19, 14, 26, 8, 27, 15, 28, 5, 29, 16, 30, 9, 31, 17, 32, 2, 33, 18, 34, 10, 35, 19, 36, 6, 37, 20, 24, 11, 38, 21, 39, 4, 40, 22, 41, 12, 42, 23, 43, 7, 44, 24, 45, 13, 46, 25, 47, 3, 48, 19, 49, 14, 50, 26, 51, 8, 52
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A006530(n), A278222(n)].
For all i, j >= 1: A324400(i) = A324400(j) => a(i) = a(j).

Crossrefs

Differs from A351454 and A351460 for the first time at n=49, where a(49) = 19, while A351454(49) = A351460(49) = 26.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    Aux351452(n) = [A006530(n), A278222(n)];
    v351452 = rgs_transform(vector(up_to, n, Aux351452(n)));
    A351452(n) = v351452[n];

A351454 Lexicographically earliest infinite sequence such that a(i) = a(j) => A006530(i) = A006530(j), A329697(i) = A329697(j) and A331410(i) = A331410(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 2, 6, 4, 7, 3, 8, 5, 9, 2, 10, 6, 11, 4, 12, 7, 13, 3, 14, 8, 15, 5, 16, 9, 17, 2, 18, 10, 19, 6, 20, 11, 21, 4, 22, 12, 23, 7, 24, 13, 25, 3, 26, 14, 27, 8, 28, 15, 29, 5, 30, 16, 31, 9, 32, 17, 33, 2, 34, 18, 35, 10, 36, 19, 37, 6, 38, 20, 39, 11, 40, 21, 41, 4, 42, 22, 43, 12, 44, 23, 45, 7, 46, 24, 47, 13, 48, 25, 49, 3, 50, 26, 51, 14, 52, 27, 53, 8, 54
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A006530(n), A329697(n), A331410(n)], or equally, of the ordered pair [A006530(n), A335880(n)].
For all i, j >= 1: A324400(i) = A324400(j) => a(i) = a(j).

Examples

			a(99) = a(121) because 99 = 3^2 * 11 and 121 = 11^2, so they have equal largest prime factor (A006530), and they also agree on A329697(99) = A329697(121) = 4 and on A331410(99) = A331410(121) = 4, therefore they get equal value (which is 51) allotted to them by the restricted growth sequence transform. - _Antti Karttunen_, Feb 14 2022
		

Crossrefs

Cf. also A324400, A336936, A351453.
Differs from A351452 for the first time at n=49, where a(49) = 26, while A351452(49) = 19.
Differs from A351460 for the first time at n=121, where a(121) = 51, while A351460(121) = 62.
Differs from A103391(1+n) for the first time after n=1 at n=121, where a(121) = 51, while A103391(122) = 62.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1]))));
    Aux351454(n) = [A006530(n), A329697(n), A331410(n)];
    v351454 = rgs_transform(vector(up_to, n, Aux351454(n)));
    A351454(n) = v351454[n];

A335421 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(A335422(i)) = A046523(A335422(j)) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 6, 3, 7, 1, 8, 4, 9, 3, 10, 5, 5, 2, 10, 6, 5, 3, 8, 7, 5, 1, 11, 8, 12, 4, 13, 9, 14, 3, 15, 10, 16, 5, 10, 5, 17, 2, 15, 10, 16, 6, 10, 5, 10, 3, 18, 8, 19, 7, 3, 5, 5, 1, 20, 11, 20, 8, 21, 12, 22, 4, 22, 13, 23, 9, 8, 14, 20, 3, 22, 15, 22, 10, 24, 16, 25, 5, 26, 10, 14, 5, 20, 17, 27, 2, 22, 15, 23, 10, 10, 16, 28, 6, 26
Offset: 0

Views

Author

Antti Karttunen, Jun 09 2020

Keywords

Comments

For all i, j: A324400(i) = A324400(j) => a(i) = a(j) => A335420(i) = A335420(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A054429(n) = ((3<<#binary(n\2))-n-1); \\ From A054429
    A163511(n) = if(!n,1,A005940(1+A054429(n)))
    A335422(n) = A005940(1+A163511(n));
    v335421 = rgs_transform(vector(1+up_to,n,A046523(A335422(n-1))));
    A335421(n) = v335421[1+n];

Formula

For all n >= 0, a(2^n) = 1.

A336147 Lexicographically earliest infinite sequence such that a(i) = a(j) => A020639(i) = A020639(j) and A278221(i) = A278221(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 3, 7, 8, 5, 9, 10, 11, 2, 12, 5, 13, 7, 14, 15, 16, 5, 4, 17, 3, 10, 18, 19, 20, 2, 21, 22, 23, 5, 24, 25, 26, 7, 27, 28, 29, 15, 11, 30, 31, 5, 6, 7, 32, 17, 33, 5, 34, 10, 35, 36, 37, 19, 38, 39, 14, 2, 40, 41, 42, 22, 43, 28, 44, 5, 45, 46, 11, 25, 47, 48, 49, 7, 3, 50, 51, 28, 52, 53, 54, 15, 55, 19, 56, 30, 57, 58, 59, 5, 60, 10, 21, 7, 61, 62, 63, 17, 64
Offset: 1

Views

Author

Antti Karttunen, Jul 12 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A020639(n), A278221(n)].
For all i, j:
A324400(i) = A324400(j) => A336146(i) = A336146(j) => a(i) = a(j),
a(i) = a(j) => A243055(i) = A243055(j),
a(i) = a(j) => A336150(i) = A336150(j).

Crossrefs

First differs from A322590 at a(70) = 28 instead of 44.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A020639(n) = if(1==n, n, factor(n)[1, 1]);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A278221(n) = A046523(A122111(n));
    Aux336147(n) = [A020639(n),A278221(n)];
    v336147 = rgs_transform(vector(up_to, n, Aux336147(n)));
    A336147(n) = v336147[n];

A336151 Lexicographically earliest infinite sequence such that a(i) = a(j) => A001221(i) = A001221(j) and A006530(i) = A006530(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 3, 7, 8, 5, 9, 10, 7, 2, 11, 5, 12, 7, 10, 13, 14, 5, 4, 15, 3, 10, 16, 17, 18, 2, 13, 19, 10, 5, 20, 21, 15, 7, 22, 23, 24, 13, 7, 25, 26, 5, 6, 7, 19, 15, 27, 5, 13, 10, 21, 28, 29, 17, 30, 31, 10, 2, 15, 32, 33, 19, 25, 23, 34, 5, 35, 36, 7, 21, 13, 37, 38, 7, 3, 39, 40, 23, 19, 41, 28, 13, 42, 17, 15, 25, 31, 43, 21, 5, 44, 10, 13, 7, 45, 46, 47, 15, 23
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A001221(n), A006530(n)]. The first member of pair gives the number of distinct prime divisors of n, and the second member gives its largest prime factor.
For all i, j: A324400(i) = A324400(j) => A286621(i) = A286621(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    Aux336151(n) = [omega(n), A006530(n)];
    v336151 = rgs_transform(vector(up_to, n, Aux336151(n)));
    A336151(n) = v336151[n];

A336153 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(1+i) = A007814(1+j) and A009194(i) = A009194(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 1, 4, 5, 2, 1, 6, 3, 7, 1, 6, 8, 2, 1, 9, 3, 6, 1, 6, 5, 10, 1, 6, 3, 11, 1, 4, 12, 2, 13, 6, 3, 2, 1, 6, 5, 14, 1, 4, 3, 7, 13, 6, 15, 7, 1, 2, 16, 6, 1, 4, 5, 17, 1, 6, 3, 10, 1, 6, 18, 2, 1, 4, 3, 6, 13, 6, 5, 9, 1, 6, 3, 7, 1, 4, 15, 6, 1, 6, 3, 11, 1, 6, 19, 7, 1, 20, 21, 7, 1, 6, 22, 10, 1, 2, 16, 2, 1, 4, 5, 6, 13
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(1+n), A009194(n)]. Note that A007814(1+n) gives the number of trailing 1-bits in the binary expansion of n.
For all i, j: A324400(i) = A324400(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A009194(n) = gcd(n, sigma(n));
    Aux336153(n) = [A007814(1+n), A009194(n)];
    v336153 = rgs_transform(vector(up_to, n, Aux336153(n)));
    A336153(n) = v336153[n];

A336157 Lexicographically earliest infinite sequence such that a(i) = a(j) => A318458(i) = A318458(j) and A336158(i) = A336158(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 1, 4, 5, 2, 6, 2, 7, 8, 1, 2, 9, 2, 10, 11, 3, 2, 6, 4, 12, 13, 14, 2, 15, 2, 1, 11, 6, 11, 16, 2, 3, 11, 17, 2, 18, 2, 19, 20, 7, 2, 6, 4, 21, 22, 23, 2, 24, 22, 6, 22, 17, 2, 25, 2, 26, 27, 1, 11, 28, 2, 6, 11, 28, 2, 29, 2, 5, 30, 31, 11, 32, 2, 31, 33, 6, 2, 34, 35, 3, 11, 36, 2, 37, 22, 38, 11, 39, 40, 6, 2, 41, 20, 42, 2, 43, 2, 44, 45
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A318458(n), A336158(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j).
A324401(i) = A324401(j) => a(i) = a(j).

Crossrefs

Cf. A324389, A324530, A324531, A324532 for other similar constructions (also similar by their scatter plots).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A336158(n) = A046523(A000265(n));
    A318458(n) = bitand(n, sigma(n)-n);
    Aux336157(n) = [A318458(n), A336158(n)];
    v336157 = rgs_transform(vector(up_to, n, Aux336157(n)));
    A336157(n) = v336157[n];
Previous Showing 31-40 of 56 results. Next