A324926
Numbers not divisible by any prime indices of their prime indices.
Original entry on oeis.org
1, 2, 4, 5, 8, 11, 16, 17, 22, 23, 25, 31, 32, 34, 41, 44, 47, 55, 59, 62, 64, 67, 73, 82, 83, 85, 88, 97, 103, 109, 115, 118, 121, 124, 125, 127, 128, 134, 137, 149, 157, 164, 166, 167, 176, 179, 187, 191, 194, 197, 205, 211, 218, 227, 233, 235, 236, 241, 242
Offset: 1
The sequence of multisets of multisets whose MM-numbers (see A302242) belong to the sequence begins:
1: {}
2: {{}}
4: {{},{}}
5: {{2}}
8: {{},{},{}}
11: {{3}}
16: {{},{},{},{}}
17: {{4}}
22: {{},{3}}
23: {{2,2}}
25: {{2},{2}}
31: {{5}}
32: {{},{},{},{},{}}
34: {{},{4}}
41: {{6}}
44: {{},{},{3}}
47: {{2,3}}
55: {{2},{3}}
59: {{7}}
62: {{},{5}}
64: {{},{},{},{},{},{}}
Cf.
A001222,
A003963,
A112798,
A120383,
A302242,
A304360,
A324846,
A324847,
A324848,
A324849,
A324850,
A324927,
A324928,
A324930.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],And@@Table[!Divisible[#,i],{i,Union@@primeMS/@primeMS[#]}]&]
A324856
Numbers divisible by exactly one of their prime indices.
Original entry on oeis.org
2, 10, 14, 15, 22, 26, 34, 38, 45, 46, 50, 55, 58, 62, 70, 74, 82, 86, 94, 98, 105, 106, 118, 119, 122, 130, 134, 135, 142, 146, 154, 158, 166, 170, 178, 182, 190, 194, 195, 202, 206, 207, 214, 218, 226, 230, 242, 250, 254, 255, 262, 266, 274, 275, 278, 285
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
10: {1,3}
14: {1,4}
15: {2,3}
22: {1,5}
26: {1,6}
34: {1,7}
38: {1,8}
45: {2,2,3}
46: {1,9}
50: {1,3,3}
55: {3,5}
58: {1,10}
62: {1,11}
70: {1,3,4}
74: {1,12}
82: {1,13}
86: {1,14}
94: {1,15}
98: {1,4,4}
Cf.
A000720,
A003963,
A112798,
A120383,
A323440,
A324694,
A324704,
A324846,
A324847,
A324848,
A324849,
A324850,
A324926,
A324929.
-
filter:= proc(n) local F;
F:= select(t -> n mod numtheory:-pi(t[1])=0, ifactors(n)[2]);
nops(F)=1 and F[1][2]=1
end proc:
select(filter, [$2..1000]); # Robert Israel, Mar 22 2019
-
Select[Range[100],Total[Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k/;Divisible[#,PrimePi[p]]]]==1&]
A324853
First number divisible by n of its own distinct prime indices.
Original entry on oeis.org
1, 2, 6, 30, 330, 4290, 60060, 1021020, 29609580, 917896980, 33962188260, 1290563153880, 52913089309080, 2275262840290440, 106937353493650680, 6309303856125390120, 422723358360401138040, 30013358443588480800840, 2190975166381959098461320
Offset: 0
a(6) = 60060 = 2^2 * 3 * 5 * 7 * 11 * 13 has prime indices {1,1,2,3,4,5,6}, and is less than any other number divisible by six of its own distinct prime indices.
-
See Links section.
-
nn=10000;
With[{mgs=Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,nn}]},Table[Position[mgs,i][[1,1]],{i,0,5}]]
-
isok(k,n) = {my(f=factor(k)[,1]); sum(j=1, #f, !(k % primepi(f[j]))) == n;}
a(n) = {my(k=1); while (!isok(k, n), k++); k;} \\ Michel Marcus, Mar 20 2019
A323440
Numbers divisible by exactly one of their distinct prime indices.
Original entry on oeis.org
2, 4, 8, 10, 14, 15, 16, 20, 22, 26, 32, 34, 38, 40, 44, 45, 46, 50, 52, 55, 58, 62, 64, 68, 70, 74, 75, 76, 80, 82, 86, 88, 92, 94, 98, 100, 104, 105, 106, 116, 118, 119, 122, 124, 128, 130, 134, 135, 136, 142, 146, 148, 154, 158, 160, 164, 166, 170, 172, 176
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
4: {1,1}
8: {1,1,1}
10: {1,3}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
20: {1,1,3}
22: {1,5}
26: {1,6}
32: {1,1,1,1,1}
34: {1,7}
38: {1,8}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
46: {1,9}
50: {1,3,3}
52: {1,1,6}
55: {3,5}
Cf.
A000720,
A003963,
A112798,
A120383,
A324704,
A324846,
A324847,
A324848,
A324849,
A324850,
A324856,
A324926,
A324929.
-
Select[Range[100],Count[If[#==1,{},FactorInteger[#]],{p_,_}/;Divisible[#,PrimePi[p]]]==1&]
-
isok(n) = my(f=factor(n)[,1]); sum(k=1, #f, (n % primepi(f[k])) == 0) == 1; \\ Michel Marcus, Mar 22 2019
A324771
Numbers divisible by at least one of their prime indices > 1.
Original entry on oeis.org
6, 12, 15, 18, 24, 28, 30, 36, 42, 45, 48, 54, 55, 56, 60, 66, 72, 75, 78, 84, 90, 96, 102, 105, 108, 110, 112, 114, 119, 120, 126, 132, 135, 138, 140, 144, 150, 152, 156, 162, 165, 168, 174, 180, 186, 192, 195, 196, 198, 204, 207, 210, 216, 220, 222, 224, 225
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2}
12: {1,1,2}
15: {2,3}
18: {1,2,2}
24: {1,1,1,2}
28: {1,1,4}
30: {1,2,3}
36: {1,1,2,2}
42: {1,2,4}
45: {2,2,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
55: {3,5}
56: {1,1,1,4}
60: {1,1,2,3}
66: {1,2,5}
72: {1,1,1,2,2}
75: {2,3,3}
78: {1,2,6}
84: {1,1,2,4}
-
Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_?(#>2&),_}:>Divisible[#,PrimePi[p]]]&]
A324842
Matula-Goebel numbers of rooted trees where the branches of any branch of any terminal subtree form a submultiset of the branches of the same subtree.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 18, 24, 28, 32, 36, 48, 54, 56, 64, 72, 78, 84, 96, 108, 112, 128, 144, 152, 156, 162, 168, 192, 196, 216, 224, 234, 252, 256, 288, 304, 312, 324, 336, 384, 392, 432, 444, 448, 456, 468, 486, 504, 512, 576, 588, 608, 624, 648, 672, 702
Offset: 1
The sequence of rooted trees together with their Matula-Goebel numbers begins:
1: o
2: (o)
4: (oo)
6: (o(o))
8: (ooo)
12: (oo(o))
16: (oooo)
18: (o(o)(o))
24: (ooo(o))
28: (oo(oo))
32: (ooooo)
36: (oo(o)(o))
48: (oooo(o))
54: (o(o)(o)(o))
56: (ooo(oo))
64: (oooooo)
72: (ooo(o)(o))
78: (o(o)(o(o)))
84: (oo(o)(oo))
96: (ooooo(o))
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
qaQ[n_]:=And[And@@Table[Divisible[n,x],{x,primeMS[n]}],And@@qaQ/@primeMS[n]];
Select[Range[1000],qaQ]
Comments