cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A324849 Positive integers divisible by none of their prime indices > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
  25: {3,3}
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) andmap(t -> not ((n/numtheory:-pi(t))::integer), numtheory:-factorset(n) minus {2}) end proc:
    select(filter, [$1..200]); # Robert Israel, Mar 20 2019
  • Mathematica
    Select[Range[100],!Or@@Cases[If[#==1,{},FactorInteger[#]],{p_,_}:>If[p==2,False,Divisible[#,PrimePi[p]]]]&]
  • PARI
    is(n) = my(f=factor(n)[, 1]~, idc=[]); for(k=1, #f, idc=concat(idc, [primepi(f[k])])); for(t=1, #idc, if(idc[t]==1, next); if(n%idc[t]==0, return(0))); 1 \\ Felix Fröhlich, Mar 21 2019

A324838 Number of unlabeled rooted trees with n nodes where the branches of no branch of the root form a submultiset of the branches of the root.

Original entry on oeis.org

1, 0, 1, 2, 5, 10, 28, 64, 169, 422, 1108, 2872, 7627, 20202, 54216, 145867, 395288
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Examples

			The a(1) = 1 through a(6) = 10 rooted trees:
  o  ((o))  ((oo))   ((ooo))    ((oooo))
            (((o)))  (((oo)))   (((ooo)))
                     ((o)(o))   ((o)(oo))
                     ((o(o)))   ((o(oo)))
                     ((((o))))  ((oo(o)))
                                ((((oo))))
                                (((o)(o)))
                                (((o(o))))
                                ((o((o))))
                                (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
    rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
    Table[Length[Select[rtall[n],And@@Table[!submultQ[b,#],{b,#}]&]],{n,10}]

A324852 Number of distinct prime indices of n that divide n.

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			60060 has 7 prime indices {1,1,2,3,4,5,6}, all of which divide 60060, and 6 of which are distinct, so a(60060) = 6.
		

Crossrefs

The version for all prime indices (counted with multiplicity) is A324848.
Positions of zeros are A324846.
Positions of ones are A323440.

Programs

  • Maple
    a:= n-> add(`if`(irem(n, numtheory[pi](i[1]))=0, 1, 0), i=ifactors(n)[2]):
    seq(a(n), n=1..120);  # Alois P. Heinz, Mar 19 2019
  • Mathematica
    Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,100}]
  • PARI
    a(n) = {my(f = factor(n)[,1]); sum(k=1, #f, !(n % primepi(f[k])));} \\ Michel Marcus, Mar 19 2019

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/(k*prime(k)) = 0.848969... (A124012). - Amiram Eldar, Jan 11 2025

A324853 First number divisible by n of its own distinct prime indices.

Original entry on oeis.org

1, 2, 6, 30, 330, 4290, 60060, 1021020, 29609580, 917896980, 33962188260, 1290563153880, 52913089309080, 2275262840290440, 106937353493650680, 6309303856125390120, 422723358360401138040, 30013358443588480800840, 2190975166381959098461320
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
a(n) is the first position of n in A324852.

Examples

			a(6) = 60060 = 2^2 * 3 * 5 * 7 * 11 * 13 has prime indices {1,1,2,3,4,5,6}, and is less than any other number divisible by six of its own distinct prime indices.
		

Crossrefs

Programs

  • C
    See Links section.
    
  • Mathematica
    nn=10000;
    With[{mgs=Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,nn}]},Table[Position[mgs,i][[1,1]],{i,0,5}]]
  • PARI
    isok(k,n) = {my(f=factor(k)[,1]); sum(j=1, #f, !(k % primepi(f[j]))) == n;}
    a(n) = {my(k=1); while (!isok(k, n), k++); k;} \\ Michel Marcus, Mar 20 2019

Extensions

a(8)-a(9) from Rémy Sigrist, Mar 19 2019
a(10)-a(18) from Michel Lagneau, Aug 19 2019

A324839 Number of unlabeled rooted identity trees with n nodes where the branches of no branch of the root form a subset of the branches of the root.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 8, 16, 35, 74, 166, 367, 831, 1878, 4299, 9857, 22775, 52777, 122957, 287337
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

An unlabeled rooted tree is an identity tree if there are no repeated branches directly under the same root.
Also the number of finitary sets with n brackets where no element is also a subset. For example, the a(7) = 8 sets are (o = {}):
{{{{{{o}}}}}}
{{{{o,{o}}}}}
{{{o,{{o}}}}}
{{o,{{{o}}}}}
{{o,{o,{o}}}}
{{{o},{{o}}}}
{{o},{{{o}}}}
{{o},{o,{o}}}

Examples

			The a(1) = 1 through a(8) = 16 rooted identity trees:
  o  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o)(o(o)))    (((o))(o(o)))
                     ((((o))))  ((o((o))))   ((o(o(o))))    (((o)(o(o))))
                                (((((o)))))  ((((o(o)))))   (((o(o(o)))))
                                             (((o)((o))))   ((o)((o(o))))
                                             (((o((o)))))   ((o)(o((o))))
                                             ((o)(((o))))   ((o((o(o)))))
                                             ((o(((o)))))   ((o(o)((o))))
                                             ((((((o))))))  ((o(o((o)))))
                                                            (((((o(o))))))
                                                            ((((o)((o)))))
                                                            ((((o((o))))))
                                                            (((o)(((o)))))
                                                            (((o(((o))))))
                                                            ((o)((((o)))))
                                                            ((o((((o))))))
                                                            (((((((o)))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],And@@Table[!SubsetQ[#,b],{b,#}]&]],{n,10}]
Showing 1-5 of 5 results.