cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A325979 Odd numbers k for which gcd(A325977(k), A325978(k)) is equal to abs(A325978(k)).

Original entry on oeis.org

1, 3465, 72981, 78651, 80937, 152703, 199341, 201771, 241605, 253287, 492507, 631881, 880821, 933147, 985473, 1063755, 1209285, 1244133, 1292445, 1313235, 1327095, 1347885, 1360881, 1451835, 1521135, 1597365, 1620375, 1814373, 2015475, 2664585, 6058233, 6676371, 8186751, 11119761, 17496243, 18379935, 28695627
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Provided that A325977(k) and A325978(k) are never zero for the same k, these are odd numbers k such that A325978(k) is not zero and divides A325977(k).
Of the first 281 terms, only a(5) = 80937, a(51) = 86086881, a(175) = 43024468437, and a(262) = 564858541521 are in A228058. - Updated Jul 20 2025

Crossrefs

Programs

A325315 Bitwise-XOR of absolute values of (n - A048250(n)) and (n - A162296(n)).

Original entry on oeis.org

1, 3, 2, 1, 4, 0, 6, 1, 5, 2, 10, 4, 12, 4, 6, 1, 16, 15, 18, 6, 30, 24, 22, 20, 19, 10, 30, 0, 28, 52, 30, 1, 46, 54, 46, 51, 36, 48, 54, 54, 40, 28, 42, 12, 28, 52, 46, 100, 41, 57, 38, 14, 52, 28, 38, 8, 46, 26, 58, 40, 60, 28, 22, 1, 82, 12, 66, 10, 94, 12, 70, 83, 72, 98, 42, 20, 94, 20, 78, 102, 105, 126, 82, 32, 66, 120, 118, 12
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Cf. A000396, A003987, A028982 (positions of odd terms), A048250, A162296, A228058, A325310, A325313, A325314.

Programs

  • Mathematica
    Array[BitXor @@ Abs[#1 - Map[Total, {#3, Complement[#2, #3]}]] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 88] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    A325315(n) = bitxor(abs(A325313(n)),abs(A325314(n)));

Formula

a(n) = A003987(abs(A325313(n)), abs(A325314(n))).

A325375 a(n) = gcd(A325319(n), A325320(n)).

Original entry on oeis.org

3, 1, 9, 1, 3, 1, 1, 3, 3, 1, 9, 1, 1, 7, 1, 5, 9, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 9, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 9, 1, 3, 5, 3, 3, 9, 1, 1, 1, 3, 1, 3, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 3, 3, 1, 25, 1, 1, 9, 1, 1, 9, 1, 3, 1, 27, 1, 1, 1, 1, 3, 9, 1, 49, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A325319(n), A325320(n)).

A325376 Terms k of A228058 such that gcd(k - A048250(k), A162296(k) - k) = A162296(k) - k.

Original entry on oeis.org

153, 477, 801, 1773, 2097, 2421, 3725, 4041, 4689, 4753, 5013, 5337, 6309, 6957, 7281, 7929, 8577, 8725, 9549, 9873, 11225, 11493, 13437, 14357, 14409, 14733, 15381, 17001, 17973, 18621, 19269, 19917, 21213, 21537, 23481, 24777, 25101, 25749, 26073, 26225, 26721, 27369, 28989, 29161, 29313, 29961, 31225, 32229, 32553, 33849
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

Also, terms of this sequence are A228058(k) for all such k that A325375(k) = A325320(k).
In range 1 .. 2^27 there are no such terms k of A228058 that gcd(k-A048250(k), A162296(k)-k) = k - A048250(k).
If any odd perfect number exists, then it must occur in this sequence, but should also satisfy the other condition given above.

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n) && (gcd(n-A048250(n),A162296(n)-n) == A162296(n)-n),k++; print1(n,", ")));

A325963 Numbers n for which A034448(n)-n is equal to n-A048250(n).

Original entry on oeis.org

1, 4, 24, 240, 349440
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2019

Keywords

Comments

No other terms below 536870912 (2^29).
a(6) > 10^12, if it exists. - Giovanni Resta, Jun 07 2019

Crossrefs

Positions of zeros in A325977.

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    isA325963(n) = ((A034448(n)-n) == (n-A048250(n)));

A325310 a(n) = A001511(A325315(n)), except when A325315(n) = 0, then a(n) = 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 2, 1, 1, 2, 2, 3, 3, 3, 2, 1, 5, 1, 2, 2, 2, 4, 2, 3, 1, 2, 2, 0, 3, 3, 2, 1, 2, 2, 2, 1, 3, 5, 2, 2, 4, 3, 2, 3, 3, 3, 2, 3, 1, 1, 2, 2, 3, 3, 2, 4, 2, 2, 2, 4, 3, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 1, 4, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 6, 2, 4, 2, 3, 4, 2, 2, 5, 2, 3, 2, 3, 6, 1, 2, 1, 3, 3, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Cf. A000396, A001511, A028982 (gives the positions of 1's), A048250, A162296, A228058, A325313, A325314, A325315, A325378, A325379.

Programs

  • Mathematica
    Array[If[# == 0, 0, IntegerExponent[2 #, 2]] &[BitXor @@ Abs[#1 - Map[Total, {#3, Complement[#2, #3]}]]] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 105] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers.
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    A325315(n) = bitxor(abs(A325313(n)),abs(A325314(n)));
    A325310(n) = A001511ext(A325315(n));

Formula

If A325315(n) = 0, then a(n) = 0, otherwise a(n) = A001511(A325315(n)).
a(A228058(n)) = A001511(abs(A325379(n))), assuming there are no odd perfect numbers, in which case a(A228058(n)) >= 3 for all n.
Previous Showing 11-16 of 16 results.