cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A325979 Odd numbers k for which gcd(A325977(k), A325978(k)) is equal to abs(A325978(k)).

Original entry on oeis.org

1, 3465, 72981, 78651, 80937, 152703, 199341, 201771, 241605, 253287, 492507, 631881, 880821, 933147, 985473, 1063755, 1209285, 1244133, 1292445, 1313235, 1327095, 1347885, 1360881, 1451835, 1521135, 1597365, 1620375, 1814373, 2015475, 2664585, 6058233, 6676371, 8186751, 11119761, 17496243, 18379935, 28695627
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

Provided that A325977(k) and A325978(k) are never zero for the same k, these are odd numbers k such that A325978(k) is not zero and divides A325977(k).
Of the first 281 terms, only a(5) = 80937, a(51) = 86086881, a(175) = 43024468437, and a(262) = 564858541521 are in A228058. - Updated Jul 20 2025

Crossrefs

Programs

A357493 Numbers k such that s(k) = 3*k, where s(k) is the sum of divisors of k that have a square factor (A162296).

Original entry on oeis.org

480, 2688, 56304, 89400, 195216, 2095104, 9724032, 69441408, 1839272960, 5905219584
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to 3-perfect numbers (A005820) with nonsquarefree divisors.
Equivalently, numbers k such that A325314(k) = -2*k.
a(11) > 10^11, if it exists.
If k is one of the 6 known 3-perfect numbers, then 4*k is a term.

Examples

			480 is a term since A162296(480) = 1440 = 3*480.
		

Crossrefs

Subsequence of A013929 and A068403.
Numbers k such that A162296(k) = m*k: A005117 (m=0), A001248 (m=1), A322609 (m=2), this sequence (m=3), A357494 (m=4).
Similar sequence: A005820.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) == 3*n]; Select[Range[2, 10^7], q]

A357494 Numbers k such that s(k) = 4*k, where s(k) is the sum of divisors of k that have a square factor (A162296).

Original entry on oeis.org

902880, 1534680, 361674720, 767685600, 4530770640, 4941414720, 5405788800, 5517818880, 16993944000, 20429240832, 94820077440
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to 4-perfect numbers (A027687) with nonsquarefree divisors.
Equivalently, numbers k such that A325314(k) = -3*k.
There are no numbers k below 10^11 such that A162296(k) = m*k for integers m > 4.

Examples

			902880 is a term since A162296(902880) = 3611520 = 4*902880.
		

Crossrefs

Subsequence of A013929 and A023198.
Numbers k such that A162296(k) = m*k: A005117 (m=0), A001248 (m=1), A322609 (m=2), A357493 (m=3), this sequence (m=4).
Similar sequence: A027687.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) == 4*n]; Select[Range[2, 2*10^6], q]

A325315 Bitwise-XOR of absolute values of (n - A048250(n)) and (n - A162296(n)).

Original entry on oeis.org

1, 3, 2, 1, 4, 0, 6, 1, 5, 2, 10, 4, 12, 4, 6, 1, 16, 15, 18, 6, 30, 24, 22, 20, 19, 10, 30, 0, 28, 52, 30, 1, 46, 54, 46, 51, 36, 48, 54, 54, 40, 28, 42, 12, 28, 52, 46, 100, 41, 57, 38, 14, 52, 28, 38, 8, 46, 26, 58, 40, 60, 28, 22, 1, 82, 12, 66, 10, 94, 12, 70, 83, 72, 98, 42, 20, 94, 20, 78, 102, 105, 126, 82, 32, 66, 120, 118, 12
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Cf. A000396, A003987, A028982 (positions of odd terms), A048250, A162296, A228058, A325310, A325313, A325314.

Programs

  • Mathematica
    Array[BitXor @@ Abs[#1 - Map[Total, {#3, Complement[#2, #3]}]] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 88] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    A325315(n) = bitxor(abs(A325313(n)),abs(A325314(n)));

Formula

a(n) = A003987(abs(A325313(n)), abs(A325314(n))).

A325375 a(n) = gcd(A325319(n), A325320(n)).

Original entry on oeis.org

3, 1, 9, 1, 3, 1, 1, 3, 3, 1, 9, 1, 1, 7, 1, 5, 9, 1, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 9, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 7, 1, 1, 9, 1, 3, 5, 3, 3, 9, 1, 1, 1, 3, 1, 3, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 3, 1, 1, 1, 3, 3, 1, 25, 1, 1, 9, 1, 1, 9, 1, 3, 1, 27, 1, 1, 1, 1, 3, 9, 1, 49, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A325319(n), A325320(n)).

A325376 Terms k of A228058 such that gcd(k - A048250(k), A162296(k) - k) = A162296(k) - k.

Original entry on oeis.org

153, 477, 801, 1773, 2097, 2421, 3725, 4041, 4689, 4753, 5013, 5337, 6309, 6957, 7281, 7929, 8577, 8725, 9549, 9873, 11225, 11493, 13437, 14357, 14409, 14733, 15381, 17001, 17973, 18621, 19269, 19917, 21213, 21537, 23481, 24777, 25101, 25749, 26073, 26225, 26721, 27369, 28989, 29161, 29313, 29961, 31225, 32229, 32553, 33849
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

Also, terms of this sequence are A228058(k) for all such k that A325375(k) = A325320(k).
In range 1 .. 2^27 there are no such terms k of A228058 that gcd(k-A048250(k), A162296(k)-k) = k - A048250(k).
If any odd perfect number exists, then it must occur in this sequence, but should also satisfy the other condition given above.

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n) && (gcd(n-A048250(n),A162296(n)-n) == A162296(n)-n),k++; print1(n,", ")));

A325310 a(n) = A001511(A325315(n)), except when A325315(n) = 0, then a(n) = 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 2, 1, 1, 2, 2, 3, 3, 3, 2, 1, 5, 1, 2, 2, 2, 4, 2, 3, 1, 2, 2, 0, 3, 3, 2, 1, 2, 2, 2, 1, 3, 5, 2, 2, 4, 3, 2, 3, 3, 3, 2, 3, 1, 1, 2, 2, 3, 3, 2, 4, 2, 2, 2, 4, 3, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 1, 4, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 6, 2, 4, 2, 3, 4, 2, 2, 5, 2, 3, 2, 3, 6, 1, 2, 1, 3, 3, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Cf. A000396, A001511, A028982 (gives the positions of 1's), A048250, A162296, A228058, A325313, A325314, A325315, A325378, A325379.

Programs

  • Mathematica
    Array[If[# == 0, 0, IntegerExponent[2 #, 2]] &[BitXor @@ Abs[#1 - Map[Total, {#3, Complement[#2, #3]}]]] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 105] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers.
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    A325315(n) = bitxor(abs(A325313(n)),abs(A325314(n)));
    A325310(n) = A001511ext(A325315(n));

Formula

If A325315(n) = 0, then a(n) = 0, otherwise a(n) = A001511(A325315(n)).
a(A228058(n)) = A001511(abs(A325379(n))), assuming there are no odd perfect numbers, in which case a(A228058(n)) >= 3 for all n.

A357495 Lesser of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor.

Original entry on oeis.org

880, 10480, 20080, 24928, 42976, 69184, 110565, 252080, 267712, 489472, 566656, 569240, 603855, 626535, 631708, 687424, 705088, 741472, 786896, 904365, 1100385, 1234480, 1280790, 1425632, 1749824, 1993750, 2012224, 2401568, 2439712, 2496736, 2542496, 2573344, 2671856
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with nonsquarefree divisors.
The larger counterparts are in A357496.
Both members of each pair are necessarily nonsquarefree numbers.

Examples

			880 is a term since s(880) = 1136 and s(1136) = 880.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) - n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, n]], {n, 2, 3*10^6}]; seq

A357496 Greater of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A162296(k) - k is the sum of aliquot divisors of k that have a square factor.

Original entry on oeis.org

1136, 11696, 22256, 25472, 43424, 73664, 131355, 304336, 267968, 492608, 612704, 674920, 640305, 788697, 691292, 705344, 723392, 813728, 809776, 1117395, 1258335, 1559696, 1518570, 1598368, 1821376, 2218250, 2058944, 2678752, 2744288, 2765024, 2848864, 2610656, 3134224
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to amicable numbers (A002025 and A002046) with nonsquarefree divisors.
The terms are ordered according to their lesser counterparts (A357495).
Both members of each pair are necessarily nonsquarefree numbers.

Examples

			1136 is a term since s(1136) = 880 and s(880) = 1136.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) - n]; seq = {}; Do[m = s[n]; If[m > n && s[m] == n, AppendTo[seq, m]], {n, 2, 3*10^6}]; seq
Previous Showing 11-19 of 19 results.