cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A325461 Heinz numbers of integer partitions with strictly decreasing differences (with the last part taken to be 0).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 67, 71, 73, 75, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).
The enumeration of these partitions by sum is given by A320510.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    9: {2,2}
   11: {5}
   13: {6}
   15: {2,3}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   29: {10}
   31: {11}
   35: {3,4}
   37: {12}
   41: {13}
   43: {14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Differences[Append[primeptn[#],0]]&]

A325392 Number of permutations of the multiset of prime factors of n whose first part is not 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 0, 2, 1, 2, 3, 1, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 1, 6, 1, 1, 3, 0, 2, 4, 1, 1, 2, 4, 1, 4, 1, 1, 3, 1, 2, 4, 1, 1, 1, 1, 1, 6, 2, 1, 2, 1, 1, 9, 2, 1, 2, 1, 2, 1, 1, 2, 3, 3, 1, 4, 1, 1, 6
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Examples

			The a(90) = 9 permutations of {2,3,3,5} not starting with 2:
  3 2 3 5
  3 2 5 3
  3 3 2 5
  3 3 5 2
  3 5 2 3
  3 5 3 2
  5 2 3 3
  5 3 2 3
  5 3 3 2
		

Crossrefs

Number of times n appears in A325390.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Permutations[primeMS[n]],#=={}||First[#]>1&]],{n,100}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ From code in A008480
    A325392(n) = if(n%2, A008480(n), A008480(n)-A008480(n/2)); \\ Antti Karttunen, Dec 06 2021

Formula

If n is odd, a(n) = A008480(n). If n is even, a(n) = A008480(n) - A008480(n/2).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021

A325403 Number of permutations of the multiset of prime factors of 2n whose first part is not 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 4, 0, 1, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 6, 1, 0, 4, 1, 4, 4, 1, 1, 4, 1, 1, 6, 1, 1, 9, 1, 1, 1, 2, 3, 4, 1, 1, 6, 4, 1, 4, 1, 1, 8, 1, 1, 9, 0, 4, 6, 1, 1, 4, 6, 1, 5, 1, 1, 9, 1, 4, 6, 1, 1, 4, 1, 1, 8, 4, 1, 4, 1, 1, 18, 4, 1, 4, 1, 4, 1, 1, 3, 9, 4, 1, 6, 1, 1, 18
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Examples

			The a(60) = 8 permutations of {2,2,2,3,5} whose first part is not 2:
  3 2 2 2 5
  3 2 2 5 2
  3 2 5 2 2
  3 5 2 2 2
  5 2 2 2 3
  5 2 2 3 2
  5 2 3 2 2
  5 3 2 2 2
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[Table@@@FactorInteger[2*n]]],First[#]!=2&]],{n,100}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ After code in A008480
    A325403(n) = (A008480(n+n)-A008480(n)); \\ Antti Karttunen, Dec 06 2021

Formula

a(n) = A008480(2n) - A008480(n) = A325392(2n).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021
Previous Showing 11-13 of 13 results.