A379845
Even squarefree numbers x such that the product of prime indices of x is a multiple of the sum of prime indices of x.
Original entry on oeis.org
2, 30, 154, 190, 390, 442, 506, 658, 714, 874, 1110, 1118, 1254, 1330, 1430, 1786, 1794, 1798, 1958, 2310, 2414, 2442, 2470, 2730, 2958, 3034, 3066, 3266, 3390, 3534, 3710, 3770, 3874, 3914, 4042, 4466, 4526, 4758, 4930, 5106, 5434, 5474, 5642, 6090, 6106
Offset: 1
The terms together with their prime indices begin:
2: {1}
30: {1,2,3}
154: {1,4,5}
190: {1,3,8}
390: {1,2,3,6}
442: {1,6,7}
506: {1,5,9}
658: {1,4,15}
714: {1,2,4,7}
874: {1,8,9}
1110: {1,2,3,12}
For nonprime instead of even we have
A326158.
A003963 multiplies together prime indices.
A005117 lists the squarefree numbers.
Counting and ranking multisets by comparing sum and product:
Cf.
A000720,
A001222,
A112798,
A175508,
A324850,
A324851,
A326150,
A326151,
A326153/
A326154,
A326156,
A326157.
A380216
Numbers whose prime indices have (product)/(sum) equal to an integer > 1.
Original entry on oeis.org
49, 63, 65, 81, 125, 150, 154, 165, 169, 190, 198, 259, 273, 333, 351, 361, 364, 385, 390, 435, 442, 468, 481, 490, 495, 506, 525, 561, 580, 595, 609, 630, 658, 675, 700, 714, 741, 765, 781, 783, 810, 840, 841, 846, 874, 900, 918, 925, 931, 935, 952, 988
Offset: 1
The terms together with their prime indices begin:
49: {4,4}
63: {2,2,4}
65: {3,6}
81: {2,2,2,2}
125: {3,3,3}
150: {1,2,3,3}
154: {1,4,5}
165: {2,3,5}
169: {6,6}
190: {1,3,8}
198: {1,2,2,5}
259: {4,12}
273: {2,4,6}
333: {2,2,12}
351: {2,2,2,6}
361: {8,8}
364: {1,1,4,6}
For example, 198 has prime indices {1,2,2,5}, and 20/10 is an integer > 1, so 198 is in the sequence.
The squarefree case is
A326158 without first term.
Partitions of this type are counted by
A380219.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
Cf.
A000720,
A001222,
A028422,
A036844,
A112798,
A301988,
A319000,
A324850,
A324851,
A326156,
A379319,
A379844.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,1000],Divisible[Times@@prix[#],Total[prix[#]]]&&!SameQ[Times@@prix[#],Total[prix[#]]]&]
A326157
Squarefree numbers whose product of prime indices is twice their sum of prime indices.
Original entry on oeis.org
The sequence of terms together with their prime indices starts:
65: {3,6}
154: {1,4,5}
190: {1,3,8}
Product of prime indices is
A003963.
-
q:= n-> (l-> andmap(i-> i[2]=1, l) and (h-> mul(i, i=h)=2*add(i,
i=h))(map(i-> numtheory[pi](i[1]), l)))(ifactors(n)[2]):
select(q, [$1..1000])[]; # Alois P. Heinz, Sep 12 2019
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[10000],SquareFreeQ[#]&&SameQ[Times@@primeMS[#],2*Plus@@primeMS[#]]&]
A380220
Least positive integer whose prime indices satisfy (product) - (sum) = n. Position of first appearance of n in A325036.
Original entry on oeis.org
2, 1, 21, 25, 39, 35, 57, 55, 49, 65, 75, 77, 129, 95, 91, 105, 183, 119, 125, 143, 133, 185, 147, 161, 169, 195, 175, 209, 339, 217, 255, 253, 259, 305, 247, 285, 273, 245, 301, 299, 345, 323, 325, 357, 371, 435, 669, 391, 361, 403, 399, 473, 343, 469, 481
Offset: 0
The least number whose prime indices satisfy (product) - (sum) = 3 is 25 (prime indices {3,3}), so a(3) = 25.
Position of first appearance of n in
A325036.
A003963 multiplies together prime indices.
The subtraction
A325036 takes the following values:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
pp=Table[Total[prix[n]]-Times@@prix[n],{n,100}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
Table[Position[pp,-i][[1,1]],{i,0,mnrm[-DeleteCases[pp,0|_?Positive]]}]
Comments