A326250 Number of weakly nesting simple graphs with vertices {1..n}.
0, 0, 0, 3, 50, 982, 32636, 2096723
Offset: 0
Links
- Gus Wiseman, The a(4) = 50 weakly nesting simple graphs.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The a(6) = 9 set partitions: {{1},{2,4,6},{3,5}} {{1,3,5},{2,4},{6}} {{1,3,6},{2,4},{5}} {{1,3,6},{2,5},{4}} {{1,4,6},{2},{3,5}} {{1,4,6},{2,5},{3}} {{1,3,5},{2,4,6}} {{1,2,4,6},{3,5}} {{1,3,5,6},{2,4}}
The sequence of terms together with their multiset multisystems begins: 8903: {{1,3},{2,2,4}} 15167: {{1,3},{2,2,5}} 16717: {{2,4},{1,3,3}} 17806: {{},{1,3},{2,2,4}} 18647: {{1,3},{2,2,6}} 20329: {{1,3},{1,2,2,4}} 20453: {{1,2,3},{1,2,4}} 21797: {{1,1,3},{2,2,4}} 22489: {{1,4},{2,2,5}} 25607: {{1,3},{2,2,7}} 26709: {{1},{1,3},{2,2,4}} 27649: {{1,4},{2,2,6}} 29551: {{1,3},{2,2,8}} 30334: {{},{1,3},{2,2,5}} 31373: {{2,5},{1,3,3}} 32741: {{1,3},{2,2,2,4}} 33434: {{},{2,4},{1,3,3}} 34691: {{1,2,3},{2,2,4}} 35177: {{1,3},{1,2,2,5}} 35612: {{},{},{1,3},{2,2,4}}
The a(4) = 28 edge-sets: {13,24} {12,13,24} {12,13,14,23} {12,13,14,23,24} {12,13,14,23,24,34} {14,23} {12,14,23} {12,13,14,24} {12,13,14,23,34} {13,14,23} {12,13,23,24} {12,13,14,24,34} {13,14,24} {12,13,24,34} {12,13,23,24,34} {13,23,24} {12,14,23,24} {12,14,23,24,34} {13,24,34} {12,14,23,34} {13,14,23,24,34} {14,23,24} {13,14,23,24} {14,23,34} {13,14,23,34} {13,14,24,34} {13,23,24,34} {14,23,24,34}
The sequence of terms together with their multiset multisystems begins: 2599: {{2,2},{1,2,3}} 4163: {{2,2},{1,2,4}} 5198: {{},{2,2},{1,2,3}} 6463: {{2,2},{1,1,2,3}} 6893: {{1,2,2},{1,2,3}} 7291: {{2,2},{1,2,5}} 7797: {{1},{2,2},{1,2,3}} 8326: {{},{2,2},{1,2,4}} 8507: {{2,3},{1,2,4}} 9131: {{2,2},{1,2,6}} 9959: {{2,2},{1,1,2,4}} 10396: {{},{},{2,2},{1,2,3}} 10649: {{2,2},{1,2,2,3}} 11041: {{1,2,2},{1,2,4}} 11639: {{2,2,2},{1,2,3}} 12489: {{1},{2,2},{1,2,4}} 12811: {{2,2},{1,2,7}} 12926: {{},{2,2},{1,1,2,3}} 12995: {{2},{2,2},{1,2,3}} 13786: {{},{1,2,2},{1,2,3}}
The a(3) = 9 pairs of edges: {12,12} {12,13} {12,23} {13,12} {13,13} {13,23} {23,12} {23,13} {23,23}
The a(180) = 10 unsortable factorizations: (2*3*3*10) (5*6*6) (3*60) (2*3*30) (6*30) (2*9*10) (9*20) (3*3*20) (10*18) (3*6*10) Missing from this list are: (2*2*3*3*5) (2*2*5*9) (4*5*9) (2*90) (180) (2*3*5*6) (2*2*45) (4*45) (3*3*4*5) (2*5*18) (5*36) (2*2*3*15) (2*6*15) (12*15) (3*4*15) (3*5*12)
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Length[Select[facs[n],!OrderedQ[Join@@Sort[primeMS/@#,lexsort]]&]],{n,100}]
The a(5) = 22 crossing normal multiset partitions: {{1,3},{1,2,4}} {{1},{1,3},{2,4}} {{1,3},{2,2,4}} {{1},{2,4},{3,5}} {{1,3},{2,3,4}} {{2},{1,3},{2,4}} {{1,3},{2,4,4}} {{2},{1,4},{3,5}} {{1,3},{2,4,5}} {{3},{1,3},{2,4}} {{1,4},{2,3,5}} {{3},{1,4},{2,5}} {{2,4},{1,1,3}} {{4},{1,3},{2,4}} {{2,4},{1,2,3}} {{4},{1,3},{2,5}} {{2,4},{1,3,3}} {{5},{1,3},{2,4}} {{2,4},{1,3,4}} {{2,4},{1,3,5}} {{2,5},{1,3,4}} {{3,5},{1,2,4}}
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
Comments