cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A326250 Number of weakly nesting simple graphs with vertices {1..n}.

Original entry on oeis.org

0, 0, 0, 3, 50, 982, 32636, 2096723
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2019

Keywords

Comments

Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d.

Crossrefs

Non-nesting set partitions are A000108.
Non-crossing graphs are A054726.
Nesting digraphs are A326209.
Crossing graphs are A326210.
MM-numbers of nesting multiset partitions are A326256.

Programs

  • Mathematica
    wnsXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x<=z
    				

Formula

Conjecture: A006125(n) = a(n) + A000108(n).

A326249 Number of capturing set partitions of {1..n} that are not nesting.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 9, 55, 283, 1324, 5838, 24744
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

Capturing is a weaker condition than nesting. A set partition is capturing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t, and nesting if it has two blocks of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t. For example, {{1,3,5},{2,4}} is capturing but not nesting, so is counted under a(5).

Examples

			The a(6) = 9 set partitions:
  {{1},{2,4,6},{3,5}}
  {{1,3,5},{2,4},{6}}
  {{1,3,6},{2,4},{5}}
  {{1,3,6},{2,5},{4}}
  {{1,4,6},{2},{3,5}}
  {{1,4,6},{2,5},{3}}
  {{1,3,5},{2,4,6}}
  {{1,2,4,6},{3,5}}
  {{1,3,5,6},{2,4}}
		

Crossrefs

MM-numbers of capturing, non-nesting multiset partitions are A326260.
Nesting set partitions are A016098.
Capturing set partitions are A326243.
Non-crossing, nesting set partitions are A122880 (conjectured).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;x
    				

A326259 MM-numbers of crossing, capturing multiset partitions (with empty parts allowed).

Original entry on oeis.org

8903, 15167, 16717, 17806, 18647, 20329, 20453, 21797, 22489, 25607, 26709, 27649, 29551, 30334, 31373, 32741, 33434, 34691, 35177, 35612, 35821, 37091, 37133, 37294, 37969, 38243, 39493, 40658, 40906, 41449, 42011, 42949, 43594, 43817, 43873, 44515, 44861
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y. It is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   8903: {{1,3},{2,2,4}}
  15167: {{1,3},{2,2,5}}
  16717: {{2,4},{1,3,3}}
  17806: {{},{1,3},{2,2,4}}
  18647: {{1,3},{2,2,6}}
  20329: {{1,3},{1,2,2,4}}
  20453: {{1,2,3},{1,2,4}}
  21797: {{1,1,3},{2,2,4}}
  22489: {{1,4},{2,2,5}}
  25607: {{1,3},{2,2,7}}
  26709: {{1},{1,3},{2,2,4}}
  27649: {{1,4},{2,2,6}}
  29551: {{1,3},{2,2,8}}
  30334: {{},{1,3},{2,2,5}}
  31373: {{2,5},{1,3,3}}
  32741: {{1,3},{2,2,2,4}}
  33434: {{},{2,4},{1,3,3}}
  34691: {{1,2,3},{2,2,4}}
  35177: {{1,3},{1,2,2,5}}
  35612: {{},{},{1,3},{2,2,4}}
		

Crossrefs

Crossing set partitions are A000108.
Capturing set partitions are A326243.
Crossing, capturing set partitions are A326246.
MM-numbers of crossing multiset partitions are A324170.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    Select[Range[100000],capXQ[primeMS/@primeMS[#]]&&croXQ[primeMS/@primeMS[#]]&]

A326279 Number of labeled n-vertex simple graphs containing either a crossing or a nesting pair of edges.

Original entry on oeis.org

0, 0, 0, 0, 28, 864, 32064, 2094064
Offset: 0

Views

Author

Gus Wiseman, Jun 23 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 28 edge-sets:
  {13,24}  {12,13,24}  {12,13,14,23}  {12,13,14,23,24}  {12,13,14,23,24,34}
  {14,23}  {12,14,23}  {12,13,14,24}  {12,13,14,23,34}
           {13,14,23}  {12,13,23,24}  {12,13,14,24,34}
           {13,14,24}  {12,13,24,34}  {12,13,23,24,34}
           {13,23,24}  {12,14,23,24}  {12,14,23,24,34}
           {13,24,34}  {12,14,23,34}  {13,14,23,24,34}
           {14,23,24}  {13,14,23,24}
           {14,23,34}  {13,14,23,34}
                       {13,14,24,34}
                       {13,23,24,34}
                       {14,23,24,34}
		

Crossrefs

Crossing and nesting simple graphs are (both) A326210, while non-crossing, non-nesting simple graphs are A326244.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

A006125(n) = a(n) + A326244(n).

A326260 MM-numbers of capturing, non-nesting multiset partitions (with empty parts allowed).

Original entry on oeis.org

2599, 4163, 5198, 6463, 6893, 7291, 7797, 8326, 8507, 9131, 9959, 10396, 10649, 11041, 11639, 12489, 12811, 12926, 12995, 13786, 14237, 14582, 14899, 15157, 15594, 16123, 16403, 16652, 17014, 17063, 17089, 17141, 18101, 18193, 18262, 18643, 18659, 19337, 19389
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n.
A set partition is capturing if it has two blocks of the form {...x...y...} and {...z...t...} where x < z and y > t or x > z and y < t. It is nesting if it has two blocks of the form {...x,y...} and {...z,t...} where x < z and y > t or x > z and y < t. Capturing is a weaker condition than nesting, so for example {{1,3,5},{2,4}} is capturing but not nesting.

Examples

			The sequence of terms together with their multiset multisystems begins:
   2599: {{2,2},{1,2,3}}
   4163: {{2,2},{1,2,4}}
   5198: {{},{2,2},{1,2,3}}
   6463: {{2,2},{1,1,2,3}}
   6893: {{1,2,2},{1,2,3}}
   7291: {{2,2},{1,2,5}}
   7797: {{1},{2,2},{1,2,3}}
   8326: {{},{2,2},{1,2,4}}
   8507: {{2,3},{1,2,4}}
   9131: {{2,2},{1,2,6}}
   9959: {{2,2},{1,1,2,4}}
  10396: {{},{},{2,2},{1,2,3}}
  10649: {{2,2},{1,2,2,3}}
  11041: {{1,2,2},{1,2,4}}
  11639: {{2,2,2},{1,2,3}}
  12489: {{1},{2,2},{1,2,4}}
  12811: {{2,2},{1,2,7}}
  12926: {{},{2,2},{1,1,2,3}}
  12995: {{2},{2,2},{1,2,3}}
  13786: {{},{1,2,2},{1,2,3}}
		

Crossrefs

Non-nesting set partitions are A000108.
Capturing set partitions are A326243.
Capturing, non-nesting set partitions are A326249.
MM-numbers of nesting multiset partitions are A326256.
MM-numbers of capturing multiset partitions are A326255.

Programs

  • Mathematica
    capXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_,{_,x_,y_,_},_,{_,z_,t_,_},_}/;xTable[PrimePi[p],{k}]]]];
    Select[Range[10000],!nesXQ[primeMS/@primeMS[#]]&&capXQ[primeMS/@primeMS[#]]&]

A326247 Number of labeled n-vertex 2-edge multigraphs that are neither crossing nor nesting.

Original entry on oeis.org

0, 0, 1, 9, 32, 80, 165, 301, 504, 792, 1185, 1705, 2376, 3224, 4277, 5565, 7120, 8976, 11169, 13737, 16720, 20160, 24101, 28589, 33672, 39400, 45825, 53001, 60984, 69832, 79605, 90365, 102176, 115104, 129217, 144585, 161280, 179376, 198949, 220077, 242840
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(3) = 9 pairs of edges:
  {12,12}
  {12,13}
  {12,23}
  {13,12}
  {13,13}
  {13,23}
  {23,12}
  {23,13}
  {23,23}
		

Crossrefs

The case for simple graphs (rather than multigraphs) is A095661.
Simple graphs that are neither crossing nor nesting are A326244.
The case for set partitions is A001519.
Non-crossing and non-nesting simple graphs are (both) A054726.

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjectures from Colin Barker, Jun 21 2019: (Start)
G.f.: x^2*(1 + 4*x - 3*x^2) / (1 - x)^5.
a(n) = (n*(12 - 19*n + 6*n^2 + n^3)) / 12.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
(End)

A326291 Number of unsortable factorizations of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2019

Keywords

Comments

A factorization into factors > 1 is unsortable if there is no permutation (c_1,...,c_k) of the factors such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the factorization (6*8*27) is sortable because the permutation (8,6,27) satisfies the condition.

Examples

			The a(180) = 10 unsortable factorizations:
  (2*3*3*10)  (5*6*6)   (3*60)
              (2*3*30)  (6*30)
              (2*9*10)  (9*20)
              (3*3*20)  (10*18)
              (3*6*10)
Missing from this list are:
  (2*2*3*3*5)  (2*2*5*9)   (4*5*9)   (2*90)   (180)
               (2*3*5*6)   (2*2*45)  (4*45)
               (3*3*4*5)   (2*5*18)  (5*36)
               (2*2*3*15)  (2*6*15)  (12*15)
                           (3*4*15)
                           (3*5*12)
		

Crossrefs

Unsortable set partitions are A058681.
Unsortable normal multiset partitions are A326211.
MM-numbers of unsortable multiset partitions are A326258.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[facs[n],!OrderedQ[Join@@Sort[primeMS/@#,lexsort]]&]],{n,100}]

A326277 Number of crossing normal multiset partitions of weight n.

Original entry on oeis.org

0, 0, 0, 0, 1, 22, 314, 3711, 39947
Offset: 0

Views

Author

Gus Wiseman, Jun 22 2019

Keywords

Comments

A multiset partition is normal if it covers an initial interval of positive integers.
A multiset partition is crossing if it has two blocks of the form {...x...y...}, {...z...t...} where x < z < y < t or z < x < t < y.

Examples

			The a(5) = 22 crossing normal multiset partitions:
  {{1,3},{1,2,4}}  {{1},{1,3},{2,4}}
  {{1,3},{2,2,4}}  {{1},{2,4},{3,5}}
  {{1,3},{2,3,4}}  {{2},{1,3},{2,4}}
  {{1,3},{2,4,4}}  {{2},{1,4},{3,5}}
  {{1,3},{2,4,5}}  {{3},{1,3},{2,4}}
  {{1,4},{2,3,5}}  {{3},{1,4},{2,5}}
  {{2,4},{1,1,3}}  {{4},{1,3},{2,4}}
  {{2,4},{1,2,3}}  {{4},{1,3},{2,5}}
  {{2,4},{1,3,3}}  {{5},{1,3},{2,4}}
  {{2,4},{1,3,4}}
  {{2,4},{1,3,5}}
  {{2,5},{1,3,4}}
  {{3,5},{1,2,4}}
		

Crossrefs

Crossing simple graphs are A326210.
Normal multiset partitions are A255906.
Non-crossing normal multiset partitions are A324171.
MM-numbers of crossing multiset partitions are A324170.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				
Previous Showing 11-18 of 18 results.